gtsam/gtsam/sfm/sfm.i

256 lines
9.2 KiB
OpenEdge ABL

//*************************************************************************
// sfm
//*************************************************************************
namespace gtsam {
#include <gtsam/sfm/SfmTrack.h>
class SfmTrack {
SfmTrack();
SfmTrack(const gtsam::Point3& pt);
const Point3& point3() const;
double r;
double g;
double b;
std::vector<pair<size_t, gtsam::Point2>> measurements;
size_t numberMeasurements() const;
pair<size_t, gtsam::Point2> measurement(size_t idx) const;
pair<size_t, size_t> siftIndex(size_t idx) const;
void addMeasurement(size_t idx, const gtsam::Point2& m);
// enabling serialization functionality
void serialize() const;
// enabling function to compare objects
bool equals(const gtsam::SfmTrack& expected, double tol) const;
};
#include <gtsam/sfm/SfmData.h>
class SfmData {
SfmData();
size_t numberCameras() const;
size_t numberTracks() const;
gtsam::PinholeCamera<gtsam::Cal3Bundler> camera(size_t idx) const;
gtsam::SfmTrack track(size_t idx) const;
void addTrack(const gtsam::SfmTrack& t);
void addCamera(const gtsam::SfmCamera& cam);
// enabling serialization functionality
void serialize() const;
// enabling function to compare objects
bool equals(const gtsam::SfmData& expected, double tol) const;
};
gtsam::SfmData readBal(string filename);
bool writeBAL(string filename, gtsam::SfmData& data);
gtsam::Values initialCamerasEstimate(const gtsam::SfmData& db);
gtsam::Values initialCamerasAndPointsEstimate(const gtsam::SfmData& db);
#include <gtsam/sfm/ShonanFactor.h>
virtual class ShonanFactor3 : gtsam::NoiseModelFactor {
ShonanFactor3(size_t key1, size_t key2, const gtsam::Rot3& R12, size_t p);
ShonanFactor3(size_t key1, size_t key2, const gtsam::Rot3& R12, size_t p,
gtsam::noiseModel::Base* model);
Vector evaluateError(const gtsam::SOn& Q1, const gtsam::SOn& Q2);
};
#include <gtsam/sfm/BinaryMeasurement.h>
template <T>
class BinaryMeasurement {
BinaryMeasurement(size_t key1, size_t key2, const T& measured,
const gtsam::noiseModel::Base* model);
size_t key1() const;
size_t key2() const;
T measured() const;
gtsam::noiseModel::Base* noiseModel() const;
};
typedef gtsam::BinaryMeasurement<gtsam::Unit3> BinaryMeasurementUnit3;
typedef gtsam::BinaryMeasurement<gtsam::Rot3> BinaryMeasurementRot3;
class BinaryMeasurementsUnit3 {
BinaryMeasurementsUnit3();
size_t size() const;
gtsam::BinaryMeasurement<gtsam::Unit3> at(size_t idx) const;
void push_back(const gtsam::BinaryMeasurement<gtsam::Unit3>& measurement);
};
#include <gtsam/sfm/ShonanAveraging.h>
// TODO(frank): copy/pasta below until we have integer template paremeters in
// wrap!
class ShonanAveragingParameters2 {
ShonanAveragingParameters2(const gtsam::LevenbergMarquardtParams& lm);
ShonanAveragingParameters2(const gtsam::LevenbergMarquardtParams& lm,
string method);
gtsam::LevenbergMarquardtParams getLMParams() const;
void setOptimalityThreshold(double value);
double getOptimalityThreshold() const;
void setAnchor(size_t index, const gtsam::Rot2& value);
pair<size_t, gtsam::Rot2> getAnchor();
void setAnchorWeight(double value);
double getAnchorWeight() const;
void setKarcherWeight(double value);
double getKarcherWeight() const;
void setGaugesWeight(double value);
double getGaugesWeight() const;
void setUseHuber(bool value);
bool getUseHuber() const;
void setCertifyOptimality(bool value);
bool getCertifyOptimality() const;
};
class ShonanAveragingParameters3 {
ShonanAveragingParameters3(const gtsam::LevenbergMarquardtParams& lm);
ShonanAveragingParameters3(const gtsam::LevenbergMarquardtParams& lm,
string method);
gtsam::LevenbergMarquardtParams getLMParams() const;
void setOptimalityThreshold(double value);
double getOptimalityThreshold() const;
void setAnchor(size_t index, const gtsam::Rot3& value);
pair<size_t, gtsam::Rot3> getAnchor();
void setAnchorWeight(double value);
double getAnchorWeight() const;
void setKarcherWeight(double value);
double getKarcherWeight() const;
void setGaugesWeight(double value);
double getGaugesWeight() const;
void setUseHuber(bool value);
bool getUseHuber() const;
void setCertifyOptimality(bool value);
bool getCertifyOptimality() const;
};
class ShonanAveraging2 {
ShonanAveraging2(string g2oFile);
ShonanAveraging2(string g2oFile,
const gtsam::ShonanAveragingParameters2& parameters);
ShonanAveraging2(const gtsam::BetweenFactorPose2s &factors,
const gtsam::ShonanAveragingParameters2 &parameters);
// Query properties
size_t nrUnknowns() const;
size_t numberMeasurements() const;
gtsam::Rot2 measured(size_t i);
gtsam::KeyVector keys(size_t i);
// Matrix API (advanced use, debugging)
Matrix denseD() const;
Matrix denseQ() const;
Matrix denseL() const;
// Matrix computeLambda_(Matrix S) const;
Matrix computeLambda_(const gtsam::Values& values) const;
Matrix computeA_(const gtsam::Values& values) const;
double computeMinEigenValue(const gtsam::Values& values) const;
gtsam::Values initializeWithDescent(size_t p, const gtsam::Values& values,
const Vector& minEigenVector,
double minEigenValue) const;
// Advanced API
gtsam::NonlinearFactorGraph buildGraphAt(size_t p) const;
gtsam::Values initializeRandomlyAt(size_t p) const;
double costAt(size_t p, const gtsam::Values& values) const;
pair<double, Vector> computeMinEigenVector(const gtsam::Values& values) const;
bool checkOptimality(const gtsam::Values& values) const;
gtsam::LevenbergMarquardtOptimizer* createOptimizerAt(
size_t p, const gtsam::Values& initial);
// gtsam::Values tryOptimizingAt(size_t p) const;
gtsam::Values tryOptimizingAt(size_t p, const gtsam::Values& initial) const;
gtsam::Values projectFrom(size_t p, const gtsam::Values& values) const;
gtsam::Values roundSolution(const gtsam::Values& values) const;
// Basic API
double cost(const gtsam::Values& values) const;
gtsam::Values initializeRandomly() const;
pair<gtsam::Values, double> run(const gtsam::Values& initial, size_t min_p,
size_t max_p) const;
};
class ShonanAveraging3 {
ShonanAveraging3(string g2oFile);
ShonanAveraging3(string g2oFile,
const gtsam::ShonanAveragingParameters3& parameters);
// TODO(frank): deprecate once we land pybind wrapper
ShonanAveraging3(const gtsam::BetweenFactorPose3s& factors);
ShonanAveraging3(const gtsam::BetweenFactorPose3s& factors,
const gtsam::ShonanAveragingParameters3& parameters);
// Query properties
size_t nrUnknowns() const;
size_t numberMeasurements() const;
gtsam::Rot3 measured(size_t i);
gtsam::KeyVector keys(size_t i);
// Matrix API (advanced use, debugging)
Matrix denseD() const;
Matrix denseQ() const;
Matrix denseL() const;
// Matrix computeLambda_(Matrix S) const;
Matrix computeLambda_(const gtsam::Values& values) const;
Matrix computeA_(const gtsam::Values& values) const;
double computeMinEigenValue(const gtsam::Values& values) const;
gtsam::Values initializeWithDescent(size_t p, const gtsam::Values& values,
const Vector& minEigenVector,
double minEigenValue) const;
// Advanced API
gtsam::NonlinearFactorGraph buildGraphAt(size_t p) const;
gtsam::Values initializeRandomlyAt(size_t p) const;
double costAt(size_t p, const gtsam::Values& values) const;
pair<double, Vector> computeMinEigenVector(const gtsam::Values& values) const;
bool checkOptimality(const gtsam::Values& values) const;
gtsam::LevenbergMarquardtOptimizer* createOptimizerAt(
size_t p, const gtsam::Values& initial);
// gtsam::Values tryOptimizingAt(size_t p) const;
gtsam::Values tryOptimizingAt(size_t p, const gtsam::Values& initial) const;
gtsam::Values projectFrom(size_t p, const gtsam::Values& values) const;
gtsam::Values roundSolution(const gtsam::Values& values) const;
// Basic API
double cost(const gtsam::Values& values) const;
gtsam::Values initializeRandomly() const;
pair<gtsam::Values, double> run(const gtsam::Values& initial, size_t min_p,
size_t max_p) const;
};
#include <gtsam/sfm/MFAS.h>
class KeyPairDoubleMap {
KeyPairDoubleMap();
KeyPairDoubleMap(const gtsam::KeyPairDoubleMap& other);
size_t size() const;
bool empty() const;
void clear();
size_t at(const pair<size_t, size_t>& keypair) const;
};
class MFAS {
MFAS(const gtsam::BinaryMeasurementsUnit3& relativeTranslations,
const gtsam::Unit3& projectionDirection);
gtsam::KeyPairDoubleMap computeOutlierWeights() const;
gtsam::KeyVector computeOrdering() const;
};
#include <gtsam/sfm/TranslationRecovery.h>
class TranslationRecovery {
TranslationRecovery(
const gtsam::BinaryMeasurementsUnit3& relativeTranslations,
const gtsam::LevenbergMarquardtParams& lmParams);
TranslationRecovery(
const gtsam::BinaryMeasurementsUnit3&
relativeTranslations); // default LevenbergMarquardtParams
gtsam::Values run(const double scale) const;
gtsam::Values run() const; // default scale = 1.0
};
} // namespace gtsam