130 lines
4.8 KiB
C++
130 lines
4.8 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file FisheyeExample.cpp
|
|
* @brief A visualSLAM example for the structure-from-motion problem on a
|
|
* simulated dataset. This version uses a fisheye camera model and a GaussNewton
|
|
* solver to solve the graph in one batch
|
|
* @author ghaggin
|
|
* @Date Apr 9,2020
|
|
*/
|
|
|
|
/**
|
|
* A structure-from-motion example with landmarks
|
|
* - The landmarks form a 10 meter cube
|
|
* - The robot rotates around the landmarks, always facing towards the cube
|
|
*/
|
|
|
|
// For loading the data
|
|
#include "SFMdata.h"
|
|
|
|
// Camera observations of landmarks will be stored as Point2 (x, y).
|
|
#include <gtsam/geometry/Point2.h>
|
|
|
|
// Each variable in the system (poses and landmarks) must be identified with a
|
|
// unique key. We can either use simple integer keys (1, 2, 3, ...) or symbols
|
|
// (X1, X2, L1). Here we will use Symbols
|
|
#include <gtsam/inference/Symbol.h>
|
|
|
|
// Use GaussNewtonOptimizer to solve graph
|
|
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
|
|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
|
#include <gtsam/nonlinear/Values.h>
|
|
|
|
// In GTSAM, measurement functions are represented as 'factors'. Several common
|
|
// factors have been provided with the library for solving robotics/SLAM/Bundle
|
|
// Adjustment problems. Here we will use Projection factors to model the
|
|
// camera's landmark observations. Also, we will initialize the robot at some
|
|
// location using a Prior factor.
|
|
#include <gtsam/geometry/Cal3Fisheye.h>
|
|
#include <gtsam/slam/PriorFactor.h>
|
|
#include <gtsam/slam/ProjectionFactor.h>
|
|
|
|
#include <fstream>
|
|
#include <vector>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
using symbol_shorthand::L; // for landmarks
|
|
using symbol_shorthand::X; // for poses
|
|
|
|
/* ************************************************************************* */
|
|
int main(int argc, char *argv[]) {
|
|
// Define the camera calibration parameters
|
|
auto K = boost::make_shared<Cal3Fisheye>(
|
|
278.66, 278.48, 0.0, 319.75, 241.96, -0.013721808247486035,
|
|
0.020727425669427896, -0.012786476702685545, 0.0025242267320687625);
|
|
|
|
// Define the camera observation noise model, 1 pixel stddev
|
|
auto measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0);
|
|
|
|
// Create the set of ground-truth landmarks
|
|
const vector<Point3> points = createPoints();
|
|
|
|
// Create the set of ground-truth poses
|
|
const vector<Pose3> poses = createPoses();
|
|
|
|
// Create a Factor Graph and Values to hold the new data
|
|
NonlinearFactorGraph graph;
|
|
Values initialEstimate;
|
|
|
|
// Add a prior on pose x0, 0.1 rad on roll,pitch,yaw, and 30cm std on x,y,z
|
|
auto posePrior = noiseModel::Diagonal::Sigmas(
|
|
(Vector(6) << Vector3::Constant(0.1), Vector3::Constant(0.3)).finished());
|
|
graph.emplace_shared<PriorFactor<Pose3>>(X(0), poses[0], posePrior);
|
|
|
|
// Add a prior on landmark l0
|
|
auto pointPrior = noiseModel::Isotropic::Sigma(3, 0.1);
|
|
graph.emplace_shared<PriorFactor<Point3>>(L(0), points[0], pointPrior);
|
|
|
|
// Add initial guesses to all observed landmarks
|
|
// Intentionally initialize the variables off from the ground truth
|
|
static const Point3 kDeltaPoint(-0.25, 0.20, 0.15);
|
|
for (size_t j = 0; j < points.size(); ++j)
|
|
initialEstimate.insert<Point3>(L(j), points[j] + kDeltaPoint);
|
|
|
|
// Loop over the poses, adding the observations to the graph
|
|
for (size_t i = 0; i < poses.size(); ++i) {
|
|
// Add factors for each landmark observation
|
|
for (size_t j = 0; j < points.size(); ++j) {
|
|
PinholeCamera<Cal3Fisheye> camera(poses[i], *K);
|
|
Point2 measurement = camera.project(points[j]);
|
|
graph.emplace_shared<GenericProjectionFactor<Pose3, Point3, Cal3Fisheye>>(
|
|
measurement, measurementNoise, X(i), L(j), K);
|
|
}
|
|
|
|
// Add an initial guess for the current pose
|
|
// Intentionally initialize the variables off from the ground truth
|
|
static const Pose3 kDeltaPose(Rot3::Rodrigues(-0.1, 0.2, 0.25),
|
|
Point3(0.05, -0.10, 0.20));
|
|
initialEstimate.insert(X(i), poses[i] * kDeltaPose);
|
|
}
|
|
|
|
GaussNewtonParams params;
|
|
params.setVerbosity("TERMINATION");
|
|
params.maxIterations = 10000;
|
|
|
|
std::cout << "Optimizing the factor graph" << std::endl;
|
|
GaussNewtonOptimizer optimizer(graph, initialEstimate, params);
|
|
Values result = optimizer.optimize();
|
|
std::cout << "Optimization complete" << std::endl;
|
|
|
|
std::cout << "initial error=" << graph.error(initialEstimate) << std::endl;
|
|
std::cout << "final error=" << graph.error(result) << std::endl;
|
|
|
|
graph.saveGraph("examples/vio_batch.dot", result);
|
|
|
|
return 0;
|
|
}
|
|
/* ************************************************************************* */
|