gtsam/matlab/unstable_examples/+imuSimulator/covarianceAnalysisCreateTra...

151 lines
6.0 KiB
Matlab

function [values, measurements] = covarianceAnalysisCreateTrajectory( options, metadata )
% Create a trajectory for running covariance analysis scripts.
% 'options' contains fields for including various factor types and setting trajectory length
% 'metadata' is a storage variable for miscellaneous factor-specific values
% Authors: Luca Carlone, David Jensen
% Date: 2014/04/16
import gtsam.*;
values = Values;
warning('Rotating Pose inside getPoseFromGtScenario! TODO: Use a body_P_sensor transform in the factors')
if options.useRealData == 1
%% Create a ground truth trajectory from Real data (if available)
fprintf('\nUsing real data as ground truth\n');
gtScenario = load('truth_scen2.mat', 'Time', 'Lat', 'Lon', 'Alt', 'Roll', 'Pitch', 'Heading',...
'VEast', 'VNorth', 'VUp');
% Limit the trajectory length
options.trajectoryLength = min([length(gtScenario.Lat)/options.subsampleStep options.trajectoryLength]);
fprintf('Scenario Ind: ');
for i=0:options.trajectoryLength
scenarioInd = options.subsampleStep * i + 1;
fprintf('%d, ', scenarioInd);
if (mod(i,12) == 0) fprintf('\n'); end
%% Generate the current pose
currentPoseKey = symbol('x', i);
currentPose = imuSimulator.getPoseFromGtScenario(gtScenario,scenarioInd);
%% FOR TESTING - this is currently moved to getPoseFromGtScenario
%currentPose = currentPose.compose(metadata.camera.bodyPoseCamera);
%currentPose = currentPose.compose(Pose3.Expmap([-pi/2;0;0;0;0;0]));
% add to values
values.insert(currentPoseKey, currentPose);
%% gt Between measurements
if options.includeBetweenFactors == 1 && i > 0
prevPose = values.at(currentPoseKey - 1);
deltaPose = prevPose.between(currentPose);
measurements(i).deltaVector = Pose3.Logmap(deltaPose);
end
%% gt IMU measurements
if options.includeIMUFactors == 1
currentVelKey = symbol('v', i);
currentBiasKey = symbol('b', i);
deltaT = 1; % amount of time between IMU measurements
if i == 0
currentVel = [0 0 0]';
else
% integrate & store intermediate measurements
for j=1:options.subsampleStep % we integrate all the intermediate measurements
previousScenarioInd = options.subsampleStep * (i-1) + 1;
scenarioIndIMU1 = previousScenarioInd+j-1;
scenarioIndIMU2 = previousScenarioInd+j;
IMUPose1 = imuSimulator.getPoseFromGtScenario(gtScenario,scenarioIndIMU1);
IMUPose2 = imuSimulator.getPoseFromGtScenario(gtScenario,scenarioIndIMU2);
IMURot1 = IMUPose1.rotation.matrix;
IMUdeltaPose = IMUPose1.between(IMUPose2);
IMUdeltaPoseVector = Pose3.Logmap(IMUdeltaPose);
IMUdeltaRotVector = IMUdeltaPoseVector(1:3);
IMUdeltaPositionVector = IMUPose2.translation.vector - IMUPose1.translation.vector; % translation in absolute frame
measurements(i).imu(j).deltaT = deltaT;
% gyro rate: Logmap(R_i' * R_i+1) / deltaT
measurements(i).imu(j).gyro = IMUdeltaRotVector./deltaT;
% deltaPij += deltaVij * deltaT + 0.5 * deltaRij.matrix() * biasHat.correctAccelerometer(measuredAcc) * deltaT*deltaT;
% acc = (deltaPosition - initialVel * dT) * (2/dt^2)
measurements(i).imu(j).accel = IMURot1' * (IMUdeltaPositionVector - currentVel.*deltaT).*(2/(deltaT*deltaT));
% Update velocity
currentVel = currentVel + IMURot1 * measurements(i).imu(j).accel * deltaT;
end
end
% Add Values: velocity and bias
values.insert(currentVelKey, LieVector(currentVel));
values.insert(currentBiasKey, metadata.imu.zeroBias);
end
%% gt GPS measurements
if options.includeGPSFactors == 1 && i > 0
gpsPositionVector = imuSimulator.getPoseFromGtScenario(gtScenario,scenarioInd).translation.vector;
measurements(i).gpsPositionVector = gpsPositionVector;
end
%% gt Camera measurements
if options.includeCameraFactors == 1 && i > 0
% Create the camera based on the current pose and the pose of the
% camera in the body
cameraPose = currentPose.compose(metadata.camera.bodyPoseCamera);
camera = SimpleCamera(cameraPose, metadata.camera.calibration);
%camera = SimpleCamera(currentPose, metadata.camera.calibration);
% Record measurements if the landmark is within visual range
for j=1:length(metadata.camera.gtLandmarkPoints)
distanceToLandmark = camera.pose.range(metadata.camera.gtLandmarkPoints(j));
if distanceToLandmark < metadata.camera.visualRange
try
z = camera.project(metadata.camera.gtLandmarkPoints(j));
measurements(i).landmarks(j) = z;
catch
% point is probably out of the camera's view
end
end
end
end
end
fprintf('\n');
else
error('Please use RealData')
%% Create a random trajectory as ground truth
currentPose = Pose3; % initial pose % initial pose
unsmooth_DP = 0.5; % controls smoothness on translation norm
unsmooth_DR = 0.1; % controls smoothness on rotation norm
fprintf('\nCreating a random ground truth trajectory\n');
currentPoseKey = symbol('x', 0);
values.insert(currentPoseKey, currentPose);
for i=1:options.trajectoryLength
% Update the pose key
currentPoseKey = symbol('x', i);
% Generate the new measurements
gtDeltaPosition = unsmooth_DP*randn(3,1) + [20;0;0]; % create random vector with mean = [20 0 0]
gtDeltaRotation = unsmooth_DR*randn(3,1) + [0;0;0]; % create random rotation with mean [0 0 0]
measurements.deltaMatrix(i,:) = [gtDeltaRotation; gtDeltaPosition];
% Create the next pose
deltaPose = Pose3.Expmap(measurements.deltaMatrix(i,:)');
currentPose = currentPose.compose(deltaPose);
% Add the current pose as a value
values.insert(currentPoseKey, currentPose);
end % end of random trajectory creation
end % end of else
end % end of function