gtsam/matlab/unstable_examples/+imuSimulator/IMUComparison_with_cov.m

129 lines
4.4 KiB
Matlab

close all
clc
import gtsam.*;
deltaT = 0.001;
summarizedDeltaT = 0.1;
timeElapsed = 1;
times = 0:deltaT:timeElapsed;
omega = [0;0;2*pi];
velocity = [1;0;0];
g = [0;0;0];
cor_v = [0;0;0];
summaryTemplate = gtsam.ImuFactorPreintegratedMeasurements( ...
gtsam.imuBias.ConstantBias([0;0;0], [0;0;0]), ...
1e-3 * eye(3), 1e-3 * eye(3), 1e-3 * eye(3));
%% Set initial conditions for the true trajectory and for the estimates
% (one estimate is obtained by integrating in the body frame, the other
% by integrating in the navigation frame)
% Initial state (body)
currentPoseGlobal = Pose3;
currentVelocityGlobal = velocity;
%% Prepare data structures for actual trajectory and estimates
% Actual trajectory
positions = zeros(3, length(times)+1);
positions(:,1) = currentPoseGlobal.translation.vector;
poses(1).p = positions(:,1);
poses(1).R = currentPoseGlobal.rotation.matrix;
%% Solver object
isamParams = ISAM2Params;
isamParams.setRelinearizeSkip(1);
isam = gtsam.ISAM2(isamParams);
sigma_init_x = 1.0;
sigma_init_v = 1.0;
sigma_init_b = 1.0;
initialValues = Values;
initialValues.insert(symbol('x',0), currentPoseGlobal);
initialValues.insert(symbol('v',0), LieVector(currentVelocityGlobal));
initialValues.insert(symbol('b',0), imuBias.ConstantBias([0;0;0],[0;0;0]));
initialFactors = NonlinearFactorGraph;
% Prior on initial pose
initialFactors.add(PriorFactorPose3(symbol('x',0), ...
currentPoseGlobal, noiseModel.Isotropic.Sigma(6, sigma_init_x)));
% Prior on initial velocity
initialFactors.add(PriorFactorLieVector(symbol('v',0), ...
LieVector(currentVelocityGlobal), noiseModel.Isotropic.Sigma(3, sigma_init_v)));
% Prior on initial bias
initialFactors.add(PriorFactorConstantBias(symbol('b',0), ...
imuBias.ConstantBias([0;0;0],[0;0;0]), noiseModel.Isotropic.Sigma(6, sigma_init_b)));
%% Main loop
i = 2;
lastSummaryTime = 0;
lastSummaryIndex = 0;
currentSummarizedMeasurement = ImuFactorPreintegratedMeasurements(summaryTemplate);
for t = times
%% Create the ground truth trajectory, using the velocities and accelerations in the inertial frame to compute the positions
[ currentPoseGlobal, currentVelocityGlobal ] = imuSimulator.integrateTrajectory( ...
currentPoseGlobal, omega, velocity, velocity, deltaT);
%% Simulate IMU measurements, considering Coriolis effect
% (in this simple example we neglect gravity and there are no other forces acting on the body)
acc_omega = imuSimulator.calculateIMUMeas_coriolis( ...
omega, omega, velocity, velocity, deltaT);
%% Accumulate preintegrated measurement
currentSummarizedMeasurement.integrateMeasurement(acc_omega(1:3), acc_omega(4:6), deltaT);
%% Update solver
if t - lastSummaryTime >= summarizedDeltaT
% Create IMU factor
initialFactors.add(ImuFactor( ...
symbol('x',lastSummaryIndex), symbol('v',lastSummaryIndex), ...
symbol('x',lastSummaryIndex+1), symbol('v',lastSummaryIndex+1), ...
symbol('b',0), currentSummarizedMeasurement, g, cor_v, ...
noiseModel.Isotropic.Sigma(9, 1e-6)));
% Predict movement in a straight line (bad initialization)
if lastSummaryIndex > 0
initialPose = isam.calculateEstimate(symbol('x',lastSummaryIndex)) ...
.compose(Pose3(Rot3, Point3( velocity * t - lastSummaryTime) ));
initialVel = isam.calculateEstimate(symbol('v',lastSummaryIndex));
else
initialPose = Pose3;
initialVel = LieVector(velocity);
end
initialValues.insert(symbol('x',lastSummaryIndex+1), initialPose);
initialValues.insert(symbol('v',lastSummaryIndex+1), initialVel);
key_pose = symbol('x',lastSummaryIndex+1);
% Update solver
isam.update(initialFactors, initialValues);
initialFactors = NonlinearFactorGraph;
initialValues = Values;
isam.calculateEstimate(key_pose);
M = isam.marginalCovariance(key_pose);
lastSummaryIndex = lastSummaryIndex + 1;
lastSummaryTime = t;
currentSummarizedMeasurement = ImuFactorPreintegratedMeasurements(summaryTemplate);
end
%% Store data in some structure for statistics and plots
positions(:,i) = currentPoseGlobal.translation.vector;
i = i + 1;
end
figure(1)
hold on;
plot(positions(1,:), positions(2,:), '-b');
plot3DTrajectory(isam.calculateEstimate, 'g-');
axis equal;
legend('true trajectory', 'traj integrated in body', 'traj integrated in nav')