gtsam/gtsam/base/cholesky.cpp

161 lines
4.8 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file cholesky.cpp
* @brief Efficient incomplete Cholesky on rank-deficient matrices, todo: constrained Cholesky
* @author Richard Roberts
* @author Frank Dellaert
* @date Nov 5, 2010
*/
#include <gtsam/base/cholesky.h>
#include <gtsam/base/timing.h>
#include <boost/format.hpp>
#include <cmath>
using namespace std;
namespace gtsam {
static const double negativePivotThreshold = -1e-1;
static const double zeroPivotThreshold = 1e-6;
static const double underconstrainedPrior = 1e-5;
static const int underconstrainedExponentDifference = 12;
/* ************************************************************************* */
static inline int choleskyStep(Matrix& ATA, size_t k, size_t order) {
// Get pivot value
double alpha = ATA(k, k);
// Correct negative pivots from round-off error
if (alpha < negativePivotThreshold) {
return -1;
} else if (alpha < 0.0)
alpha = 0.0;
const double beta = sqrt(alpha);
if (beta > zeroPivotThreshold) {
const double betainv = 1.0 / beta;
// Update k,k
ATA(k, k) = beta;
if (k < (order - 1)) {
// Update A(k,k+1:end) <- A(k,k+1:end) / beta
typedef Matrix::RowXpr::SegmentReturnType BlockRow;
BlockRow V = ATA.row(k).segment(k + 1, order - (k + 1));
V *= betainv;
// Update A(k+1:end, k+1:end) <- A(k+1:end, k+1:end) - v*v' / alpha
ATA.block(k + 1, k + 1, order - (k + 1), order - (k + 1)) -= V.transpose() * V;
// ATA.bottomRightCorner(order-(k+1), order-(k+1)).selfadjointView<Eigen::Upper>()
// .rankUpdate(V.adjoint(), -1);
}
return 1;
} else {
// For zero pivots, add the underconstrained variable prior
ATA(k, k) = underconstrainedPrior;
for (size_t j = k + 1; j < order; ++j)
ATA(k, j) = 0.0;
return 0;
}
}
/* ************************************************************************* */
pair<size_t, bool> choleskyCareful(Matrix& ATA, int order) {
// Check that the matrix is square (we do not check for symmetry)
assert(ATA.rows() == ATA.cols());
// Number of rows/columns
const size_t n = ATA.rows();
// Negative order means factor the entire matrix
if (order < 0)
order = int(n);
assert(size_t(order) <= n);
// The index of the row after the last non-zero row of the square-root factor
size_t maxrank = 0;
bool success = true;
// Factor row-by-row
for (size_t k = 0; k < size_t(order); ++k) {
int stepResult = choleskyStep(ATA, k, size_t(order));
if (stepResult == 1) {
maxrank = k + 1;
} else if (stepResult == -1) {
success = false;
break;
} /* else if(stepResult == 0) Found zero pivot */
}
return make_pair(maxrank, success);
}
/* ************************************************************************* */
bool choleskyPartial(Matrix& ABC, size_t nFrontal, size_t topleft) {
gttic(choleskyPartial);
if (nFrontal == 0)
return true;
assert(ABC.cols() == ABC.rows());
assert(size_t(ABC.rows()) >= topleft);
const size_t n = static_cast<size_t>(ABC.rows() - topleft);
assert(nFrontal <= size_t(n));
// Create views on blocks
auto A = ABC.block(topleft, topleft, nFrontal, nFrontal);
auto B = ABC.block(topleft, topleft + nFrontal, nFrontal, n - nFrontal);
auto C = ABC.block(topleft + nFrontal, topleft + nFrontal, n - nFrontal, n - nFrontal);
// Compute Cholesky factorization A = R'*R, overwrites A.
gttic(LLT);
Eigen::LLT<Matrix, Eigen::Upper> llt(A);
Eigen::ComputationInfo lltResult = llt.info();
if (lltResult != Eigen::Success)
return false;
auto R = A.triangularView<Eigen::Upper>();
R = llt.matrixU();
gttoc(LLT);
// Compute S = inv(R') * B
gttic(compute_S);
if (nFrontal < n)
R.transpose().solveInPlace(B);
gttoc(compute_S);
// Compute L = C - S' * S
gttic(compute_L);
if (nFrontal < n)
C.selfadjointView<Eigen::Upper>().rankUpdate(B.transpose(), -1.0);
gttoc(compute_L);
// Check last diagonal element - Eigen does not check it
if (nFrontal >= 2) {
int exp2, exp1;
// NOTE(gareth): R is already the size of A, so we don't need to add topleft here.
(void)frexp(R(nFrontal - 2, nFrontal - 2), &exp2);
(void)frexp(R(nFrontal - 1, nFrontal - 1), &exp1);
return (exp2 - exp1 < underconstrainedExponentDifference);
} else if (nFrontal == 1) {
int exp1;
(void)frexp(R(0, 0), &exp1);
return (exp1 > -underconstrainedExponentDifference);
} else {
return true;
}
}
} // namespace gtsam