533 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			533 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file    ConcurrentBatchSmoother.cpp
 | 
						|
 * @brief   A Levenberg-Marquardt Batch Smoother that implements the
 | 
						|
 *          Concurrent Filtering and Smoothing interface.
 | 
						|
 * @author  Stephen Williams
 | 
						|
 */
 | 
						|
 | 
						|
#include <gtsam_unstable/nonlinear/ConcurrentBatchSmoother.h>
 | 
						|
#include <gtsam/nonlinear/LinearContainerFactor.h>
 | 
						|
#include <gtsam/linear/GaussianJunctionTree.h>
 | 
						|
#include <gtsam/base/timing.h>
 | 
						|
#include <gtsam/base/debug.h>
 | 
						|
 | 
						|
namespace gtsam {
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void ConcurrentBatchSmoother::print(const std::string& s, const KeyFormatter& keyFormatter) const {
 | 
						|
  std::cout << s;
 | 
						|
  std::cout << "  Factors:" << std::endl;
 | 
						|
  BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, factors_) {
 | 
						|
    PrintNonlinearFactor(factor, "    ", keyFormatter);
 | 
						|
  }
 | 
						|
  theta_.print("Values:\n");
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
bool ConcurrentBatchSmoother::equals(const ConcurrentSmoother& rhs, double tol) const {
 | 
						|
  const ConcurrentBatchSmoother* smoother = dynamic_cast<const ConcurrentBatchSmoother*>(&rhs);
 | 
						|
  return smoother
 | 
						|
      && factors_.equals(smoother->factors_)
 | 
						|
      && theta_.equals(smoother->theta_)
 | 
						|
      && ordering_.equals(smoother->ordering_)
 | 
						|
      && delta_.equals(smoother->delta_)
 | 
						|
      && separatorValues_.equals(smoother->separatorValues_);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
ConcurrentBatchSmoother::Result ConcurrentBatchSmoother::update(const NonlinearFactorGraph& newFactors, const Values& newTheta) {
 | 
						|
 | 
						|
  gttic(update);
 | 
						|
 | 
						|
  // Create the return result meta-data
 | 
						|
  Result result;
 | 
						|
 | 
						|
  // Update all of the internal variables with the new information
 | 
						|
  gttic(augment_system);
 | 
						|
  {
 | 
						|
    // Add the new variables to theta
 | 
						|
    theta_.insert(newTheta);
 | 
						|
    // Add new variables to the end of the ordering
 | 
						|
    std::vector<size_t> dims;
 | 
						|
    dims.reserve(newTheta.size());
 | 
						|
    BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, newTheta) {
 | 
						|
      ordering_.push_back(key_value.key);
 | 
						|
      dims.push_back(key_value.value.dim());
 | 
						|
    }
 | 
						|
    // Augment Delta
 | 
						|
    delta_.append(dims);
 | 
						|
    for(size_t i = delta_.size() - dims.size(); i < delta_.size(); ++i) {
 | 
						|
      delta_[i].setZero();
 | 
						|
    }
 | 
						|
    // Add the new factors to the graph, updating the variable index
 | 
						|
    insertFactors(newFactors);
 | 
						|
  }
 | 
						|
  gttoc(augment_system);
 | 
						|
 | 
						|
  // Reorder the system to ensure efficient optimization (and marginalization) performance
 | 
						|
  gttic(reorder);
 | 
						|
  reorder();
 | 
						|
  gttoc(reorder);
 | 
						|
 | 
						|
  // Optimize the factors using a modified version of L-M
 | 
						|
  gttic(optimize);
 | 
						|
  if(factors_.size() > 0) {
 | 
						|
    result = optimize();
 | 
						|
  }
 | 
						|
  gttoc(optimize);
 | 
						|
 | 
						|
 | 
						|
  // Moved presync code into the update function. Generally, only one call to smoother.update(*) is performed
 | 
						|
  // between synchronizations, so no extra work is being done. This also allows the presync code to be performed
 | 
						|
  // while the filter is still running (instead of during the synchronization when the filter is paused)
 | 
						|
  gttic(presync);
 | 
						|
  if(separatorValues_.size() > 0) {
 | 
						|
    updateSmootherSummarization();
 | 
						|
  }
 | 
						|
  gttoc(presync);
 | 
						|
 | 
						|
  gttoc(update);
 | 
						|
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void ConcurrentBatchSmoother::presync() {
 | 
						|
 | 
						|
  gttic(presync);
 | 
						|
 | 
						|
  gttoc(presync);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void ConcurrentBatchSmoother::getSummarizedFactors(NonlinearFactorGraph& summarizedFactors) {
 | 
						|
 | 
						|
  gttic(get_summarized_factors);
 | 
						|
 | 
						|
  // Copy the previous calculated smoother summarization factors into the output
 | 
						|
  summarizedFactors.push_back(smootherSummarization_);
 | 
						|
 | 
						|
  gttoc(get_summarized_factors);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void ConcurrentBatchSmoother::synchronize(const NonlinearFactorGraph& smootherFactors, const Values& smootherValues,
 | 
						|
    const NonlinearFactorGraph& summarizedFactors, const Values& separatorValues) {
 | 
						|
 | 
						|
  gttic(synchronize);
 | 
						|
 | 
						|
  // Remove the previous filter summarization from the graph
 | 
						|
  removeFactors(filterSummarizationSlots_);
 | 
						|
 | 
						|
  // Insert new linpoints into the values, augment the ordering, and store new dims to augment delta
 | 
						|
  std::vector<size_t> dims;
 | 
						|
  dims.reserve(smootherValues.size() + separatorValues.size());
 | 
						|
  BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, smootherValues) {
 | 
						|
    Values::iterator iter = theta_.find(key_value.key);
 | 
						|
    if(iter == theta_.end()) {
 | 
						|
      theta_.insert(key_value.key, key_value.value);
 | 
						|
      ordering_.push_back(key_value.key);
 | 
						|
      dims.push_back(key_value.value.dim());
 | 
						|
    } else {
 | 
						|
      iter->value = key_value.value;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, separatorValues) {
 | 
						|
    Values::iterator iter = theta_.find(key_value.key);
 | 
						|
    if(iter == theta_.end()) {
 | 
						|
      theta_.insert(key_value.key, key_value.value);
 | 
						|
      ordering_.push_back(key_value.key);
 | 
						|
      dims.push_back(key_value.value.dim());
 | 
						|
    } else {
 | 
						|
      iter->value = key_value.value;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Augment Delta
 | 
						|
  delta_.append(dims);
 | 
						|
  for(size_t i = delta_.size() - dims.size(); i < delta_.size(); ++i) {
 | 
						|
    delta_[i].setZero();
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert the new smoother factors
 | 
						|
  insertFactors(smootherFactors);
 | 
						|
 | 
						|
  // Insert the new filter summarized factors
 | 
						|
  filterSummarizationSlots_ = insertFactors(summarizedFactors);
 | 
						|
 | 
						|
  // Update the list of root keys
 | 
						|
  separatorValues_ = separatorValues;
 | 
						|
 | 
						|
  gttoc(synchronize);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void ConcurrentBatchSmoother::postsync() {
 | 
						|
 | 
						|
  gttic(postsync);
 | 
						|
 | 
						|
  gttoc(postsync);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
std::vector<size_t> ConcurrentBatchSmoother::insertFactors(const NonlinearFactorGraph& factors) {
 | 
						|
 | 
						|
  gttic(insert_factors);
 | 
						|
 | 
						|
  // create the output vector
 | 
						|
  std::vector<size_t> slots;
 | 
						|
  slots.reserve(factors.size());
 | 
						|
 | 
						|
  // Insert the factor into an existing hole in the factor graph, if possible
 | 
						|
  BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, factors) {
 | 
						|
    size_t slot;
 | 
						|
    if(availableSlots_.size() > 0) {
 | 
						|
      slot = availableSlots_.front();
 | 
						|
      availableSlots_.pop();
 | 
						|
      factors_.replace(slot, factor);
 | 
						|
    } else {
 | 
						|
      slot = factors_.size();
 | 
						|
      factors_.push_back(factor);
 | 
						|
    }
 | 
						|
    slots.push_back(slot);
 | 
						|
  }
 | 
						|
 | 
						|
  gttoc(insert_factors);
 | 
						|
 | 
						|
  return slots;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void ConcurrentBatchSmoother::removeFactors(const std::vector<size_t>& slots) {
 | 
						|
 | 
						|
  gttic(remove_factors);
 | 
						|
 | 
						|
  // For each factor slot to delete...
 | 
						|
  SymbolicFactorGraph factors;
 | 
						|
  BOOST_FOREACH(size_t slot, slots) {
 | 
						|
    // Create a symbolic version for the variable index
 | 
						|
    factors.push_back(factors_.at(slot)->symbolic(ordering_));
 | 
						|
 | 
						|
    // Remove the factor from the graph
 | 
						|
    factors_.remove(slot);
 | 
						|
 | 
						|
    // Mark the factor slot as available
 | 
						|
    availableSlots_.push(slot);
 | 
						|
  }
 | 
						|
 | 
						|
  gttoc(remove_factors);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void ConcurrentBatchSmoother::reorder() {
 | 
						|
 | 
						|
  // Recalculate the variable index
 | 
						|
  variableIndex_ = VariableIndex(*factors_.symbolic(ordering_));
 | 
						|
 | 
						|
  // Initialize all variables to group0
 | 
						|
  std::vector<int> cmember(variableIndex_.size(), 0);
 | 
						|
 | 
						|
  // Set all of the separator keys to Group1
 | 
						|
  if(separatorValues_.size() > 0) {
 | 
						|
    BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, separatorValues_) {
 | 
						|
      cmember[ordering_.at(key_value.key)] = 1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Generate the permutation
 | 
						|
  Permutation forwardPermutation = *inference::PermutationCOLAMD_(variableIndex_, cmember);
 | 
						|
 | 
						|
  // Permute the ordering, variable index, and deltas
 | 
						|
  ordering_.permuteInPlace(forwardPermutation);
 | 
						|
  variableIndex_.permuteInPlace(forwardPermutation);
 | 
						|
  delta_.permuteInPlace(forwardPermutation);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
ConcurrentBatchSmoother::Result ConcurrentBatchSmoother::optimize() {
 | 
						|
 | 
						|
  // Create output result structure
 | 
						|
  Result result;
 | 
						|
  result.nonlinearVariables = theta_.size() - separatorValues_.size();
 | 
						|
  result.linearVariables = separatorValues_.size();
 | 
						|
 | 
						|
  // Set optimization parameters
 | 
						|
  double lambda = parameters_.lambdaInitial;
 | 
						|
  double lambdaFactor = parameters_.lambdaFactor;
 | 
						|
  double lambdaUpperBound = parameters_.lambdaUpperBound;
 | 
						|
  double lambdaLowerBound = 0.5 / parameters_.lambdaUpperBound;
 | 
						|
  size_t maxIterations = parameters_.maxIterations;
 | 
						|
  double relativeErrorTol = parameters_.relativeErrorTol;
 | 
						|
  double absoluteErrorTol = parameters_.absoluteErrorTol;
 | 
						|
  double errorTol = parameters_.errorTol;
 | 
						|
 | 
						|
  // Create a Values that holds the current evaluation point
 | 
						|
  Values evalpoint = theta_.retract(delta_, ordering_);
 | 
						|
  result.error = factors_.error(evalpoint);
 | 
						|
 | 
						|
  // Use a custom optimization loop so the linearization points can be controlled
 | 
						|
  double previousError;
 | 
						|
  VectorValues newDelta;
 | 
						|
  do {
 | 
						|
    previousError = result.error;
 | 
						|
 | 
						|
    // Do next iteration
 | 
						|
    gttic(optimizer_iteration);
 | 
						|
    {
 | 
						|
      // Linearize graph around the linearization point
 | 
						|
      GaussianFactorGraph linearFactorGraph = *factors_.linearize(theta_, ordering_);
 | 
						|
 | 
						|
      // Keep increasing lambda until we make make progress
 | 
						|
      while(true) {
 | 
						|
        // Add prior factors at the current solution
 | 
						|
        gttic(damp);
 | 
						|
        GaussianFactorGraph dampedFactorGraph(linearFactorGraph);
 | 
						|
        dampedFactorGraph.reserve(linearFactorGraph.size() + delta_.size());
 | 
						|
        {
 | 
						|
          // for each of the variables, add a prior at the current solution
 | 
						|
          for(size_t j=0; j<delta_.size(); ++j) {
 | 
						|
            Matrix A = lambda * eye(delta_[j].size());
 | 
						|
            Vector b = lambda * delta_[j];
 | 
						|
            SharedDiagonal model = noiseModel::Unit::Create(delta_[j].size());
 | 
						|
            GaussianFactor::shared_ptr prior(new JacobianFactor(j, A, b, model));
 | 
						|
            dampedFactorGraph.push_back(prior);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        gttoc(damp);
 | 
						|
        result.lambdas++;
 | 
						|
 | 
						|
        gttic(solve);
 | 
						|
        // Solve Damped Gaussian Factor Graph
 | 
						|
        newDelta = GaussianJunctionTree(dampedFactorGraph).optimize(parameters_.getEliminationFunction());
 | 
						|
        // update the evalpoint with the new delta
 | 
						|
        evalpoint = theta_.retract(newDelta, ordering_);
 | 
						|
        gttoc(solve);
 | 
						|
 | 
						|
        // Evaluate the new error
 | 
						|
        gttic(compute_error);
 | 
						|
        double error = factors_.error(evalpoint);
 | 
						|
        gttoc(compute_error);
 | 
						|
 | 
						|
        if(error < result.error) {
 | 
						|
          // Keep this change
 | 
						|
          // Update the error value
 | 
						|
          result.error = error;
 | 
						|
          // Update the linearization point
 | 
						|
          theta_ = evalpoint;
 | 
						|
          // Reset the deltas to zeros
 | 
						|
          delta_.setZero();
 | 
						|
          // Put the linearization points and deltas back for specific variables
 | 
						|
          if(separatorValues_.size() > 0) {
 | 
						|
            theta_.update(separatorValues_);
 | 
						|
            BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, separatorValues_) {
 | 
						|
              Index index = ordering_.at(key_value.key);
 | 
						|
              delta_.at(index) = newDelta.at(index);
 | 
						|
            }
 | 
						|
          }
 | 
						|
          // Decrease lambda for next time
 | 
						|
          lambda /= lambdaFactor;
 | 
						|
          if(lambda < lambdaLowerBound) {
 | 
						|
            lambda = lambdaLowerBound;
 | 
						|
          }
 | 
						|
          // End this lambda search iteration
 | 
						|
          break;
 | 
						|
        } else {
 | 
						|
          // Reject this change
 | 
						|
          // Increase lambda and continue searching
 | 
						|
          lambda *= lambdaFactor;
 | 
						|
          if(lambda > lambdaUpperBound) {
 | 
						|
            // The maximum lambda has been used. Print a warning and end the search.
 | 
						|
            std::cout << "Warning:  Levenberg-Marquardt giving up because cannot decrease error with maximum lambda" << std::endl;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      } // end while
 | 
						|
    }
 | 
						|
    gttoc(optimizer_iteration);
 | 
						|
 | 
						|
    result.iterations++;
 | 
						|
  } while(result.iterations < maxIterations &&
 | 
						|
      !checkConvergence(relativeErrorTol, absoluteErrorTol, errorTol, previousError, result.error, NonlinearOptimizerParams::SILENT));
 | 
						|
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void ConcurrentBatchSmoother::updateSmootherSummarization() {
 | 
						|
 | 
						|
  // The smoother summarization factors are the resulting marginal factors on the separator
 | 
						|
  // variables that result from marginalizing out all of the other variables
 | 
						|
  // These marginal factors will be cached for later transmission to the filter using
 | 
						|
  // linear container factors
 | 
						|
  // Note: This assumes the ordering already has the separator variables eliminated last
 | 
						|
 | 
						|
  // Clear out any existing smoother summarized factors
 | 
						|
  smootherSummarization_.resize(0);
 | 
						|
 | 
						|
  // Create the linear factor graph
 | 
						|
  gtsam::GaussianFactorGraph linearFactorGraph = *factors_.linearize(theta_, ordering_);
 | 
						|
 | 
						|
  // Construct an elimination tree to perform sparse elimination
 | 
						|
  std::vector<EliminationForest::shared_ptr> forest( EliminationForest::Create(linearFactorGraph, variableIndex_) );
 | 
						|
 | 
						|
  // This is a forest. Only the top-most node/index of each tree needs to be eliminated; all of the children will be eliminated automatically
 | 
						|
  // Find the subset of nodes/keys that must be eliminated
 | 
						|
  std::set<gtsam::Index> indicesToEliminate;
 | 
						|
  BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, theta_) {
 | 
						|
    indicesToEliminate.insert(ordering_.at(key_value.key));
 | 
						|
  }
 | 
						|
  BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, separatorValues_) {
 | 
						|
    indicesToEliminate.erase(ordering_.at(key_value.key));
 | 
						|
  }
 | 
						|
  std::vector<Index> indices(indicesToEliminate.begin(), indicesToEliminate.end());
 | 
						|
  BOOST_FOREACH(Index index, indices) {
 | 
						|
    EliminationForest::removeChildrenIndices(indicesToEliminate, forest.at(index));
 | 
						|
  }
 | 
						|
 | 
						|
  // Eliminate each top-most key, returning a Gaussian Factor on some of the remaining variables
 | 
						|
  // Convert the marginal factors into Linear Container Factors and store
 | 
						|
  BOOST_FOREACH(gtsam::Index index, indicesToEliminate) {
 | 
						|
    GaussianFactor::shared_ptr gaussianFactor = forest.at(index)->eliminateRecursive(parameters_.getEliminationFunction());
 | 
						|
    LinearContainerFactor::shared_ptr marginalFactor(new LinearContainerFactor(gaussianFactor, ordering_, theta_));
 | 
						|
    smootherSummarization_.push_back(marginalFactor);
 | 
						|
  }
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void ConcurrentBatchSmoother::PrintNonlinearFactor(const NonlinearFactor::shared_ptr& factor, const std::string& indent, const KeyFormatter& keyFormatter) {
 | 
						|
  std::cout << indent;
 | 
						|
  if(factor) {
 | 
						|
    if(boost::dynamic_pointer_cast<LinearContainerFactor>(factor)) {
 | 
						|
      std::cout << "l( ";
 | 
						|
    } else {
 | 
						|
      std::cout << "f( ";
 | 
						|
    }
 | 
						|
    BOOST_FOREACH(Key key, *factor) {
 | 
						|
      std::cout << keyFormatter(key) << " ";
 | 
						|
    }
 | 
						|
    std::cout << ")" << std::endl;
 | 
						|
  } else {
 | 
						|
    std::cout << "{ NULL }" << std::endl;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void ConcurrentBatchSmoother::PrintLinearFactor(const GaussianFactor::shared_ptr& factor, const Ordering& ordering, const std::string& indent, const KeyFormatter& keyFormatter) {
 | 
						|
  std::cout << indent;
 | 
						|
  if(factor) {
 | 
						|
    std::cout << "g( ";
 | 
						|
    BOOST_FOREACH(Index index, *factor) {
 | 
						|
      std::cout << keyFormatter(ordering.key(index)) << " ";
 | 
						|
    }
 | 
						|
    std::cout << ")" << std::endl;
 | 
						|
  } else {
 | 
						|
    std::cout << "{ NULL }" << std::endl;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
std::vector<Index> ConcurrentBatchSmoother::EliminationForest::ComputeParents(const VariableIndex& structure) {
 | 
						|
  // Number of factors and variables
 | 
						|
  const size_t m = structure.nFactors();
 | 
						|
  const size_t n = structure.size();
 | 
						|
 | 
						|
  static const gtsam::Index none = std::numeric_limits<gtsam::Index>::max();
 | 
						|
 | 
						|
  // Allocate result parent vector and vector of last factor columns
 | 
						|
  std::vector<gtsam::Index> parents(n, none);
 | 
						|
  std::vector<gtsam::Index> prevCol(m, none);
 | 
						|
 | 
						|
  // for column j \in 1 to n do
 | 
						|
  for (gtsam::Index j = 0; j < n; j++) {
 | 
						|
    // for row i \in Struct[A*j] do
 | 
						|
    BOOST_FOREACH(const size_t i, structure[j]) {
 | 
						|
      if (prevCol[i] != none) {
 | 
						|
        gtsam::Index k = prevCol[i];
 | 
						|
        // find root r of the current tree that contains k
 | 
						|
        gtsam::Index r = k;
 | 
						|
        while (parents[r] != none)
 | 
						|
          r = parents[r];
 | 
						|
        if (r != j) parents[r] = j;
 | 
						|
      }
 | 
						|
      prevCol[i] = j;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return parents;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
std::vector<ConcurrentBatchSmoother::EliminationForest::shared_ptr> ConcurrentBatchSmoother::EliminationForest::Create(const gtsam::GaussianFactorGraph& factorGraph, const gtsam::VariableIndex& structure) {
 | 
						|
  // Compute the tree structure
 | 
						|
  std::vector<gtsam::Index> parents(ComputeParents(structure));
 | 
						|
 | 
						|
  // Number of variables
 | 
						|
  const size_t n = structure.size();
 | 
						|
 | 
						|
  static const gtsam::Index none = std::numeric_limits<gtsam::Index>::max();
 | 
						|
 | 
						|
  // Create tree structure
 | 
						|
  std::vector<shared_ptr> trees(n);
 | 
						|
  for (gtsam::Index k = 1; k <= n; k++) {
 | 
						|
    gtsam::Index j = n - k;  // Start at the last variable and loop down to 0
 | 
						|
    trees[j].reset(new EliminationForest(j));  // Create a new node on this variable
 | 
						|
    if (parents[j] != none)  // If this node has a parent, add it to the parent's children
 | 
						|
      trees[parents[j]]->add(trees[j]);
 | 
						|
  }
 | 
						|
 | 
						|
  // Hang factors in right places
 | 
						|
  BOOST_FOREACH(const sharedFactor& factor, factorGraph) {
 | 
						|
    if(factor && factor->size() > 0) {
 | 
						|
      gtsam::Index j = *std::min_element(factor->begin(), factor->end());
 | 
						|
      if(j < structure.size())
 | 
						|
        trees[j]->add(factor);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return trees;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
ConcurrentBatchSmoother::EliminationForest::sharedFactor ConcurrentBatchSmoother::EliminationForest::eliminateRecursive(Eliminate function) {
 | 
						|
 | 
						|
  // Create the list of factors to be eliminated, initially empty, and reserve space
 | 
						|
  gtsam::GaussianFactorGraph factors;
 | 
						|
  factors.reserve(this->factors_.size() + this->subTrees_.size());
 | 
						|
 | 
						|
  // Add all factors associated with the current node
 | 
						|
  factors.push_back(this->factors_.begin(), this->factors_.end());
 | 
						|
 | 
						|
  // for all subtrees, eliminate into Bayes net and a separator factor, added to [factors]
 | 
						|
  BOOST_FOREACH(const shared_ptr& child, subTrees_)
 | 
						|
    factors.push_back(child->eliminateRecursive(function));
 | 
						|
 | 
						|
  // Combine all factors (from this node and from subtrees) into a joint factor
 | 
						|
  gtsam::GaussianFactorGraph::EliminationResult eliminated(function(factors, 1));
 | 
						|
 | 
						|
  return eliminated.second;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void ConcurrentBatchSmoother::EliminationForest::removeChildrenIndices(std::set<Index>& indices, const ConcurrentBatchSmoother::EliminationForest::shared_ptr& tree) {
 | 
						|
  BOOST_FOREACH(const EliminationForest::shared_ptr& child, tree->children()) {
 | 
						|
    indices.erase(child->key());
 | 
						|
    removeChildrenIndices(indices, child);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
 | 
						|
}/// namespace gtsam
 |