177 lines
5.8 KiB
Python
177 lines
5.8 KiB
Python
"""
|
|
iSAM2 example with ImuFactor.
|
|
Author: Robert Truax (C++), Frank Dellaert (Python)
|
|
"""
|
|
# pylint: disable=invalid-name, E1101
|
|
|
|
from __future__ import print_function
|
|
|
|
import math
|
|
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
from mpl_toolkits.mplot3d import Axes3D # pylint: disable=W0611
|
|
|
|
import gtsam
|
|
import gtsam.utils.plot as gtsam_plot
|
|
|
|
|
|
def X(key):
|
|
"""Create symbol for pose key."""
|
|
return gtsam.symbol(ord('x'), key)
|
|
|
|
|
|
def V(key):
|
|
"""Create symbol for velocity key."""
|
|
return gtsam.symbol(ord('v'), key)
|
|
|
|
|
|
def vector3(x, y, z):
|
|
"""Create 3d double numpy array."""
|
|
return np.array([x, y, z], dtype=np.float)
|
|
|
|
|
|
def ISAM2_plot(values, fignum=0):
|
|
"""Plot poses."""
|
|
fig = plt.figure(fignum)
|
|
axes = fig.gca(projection='3d')
|
|
plt.cla()
|
|
|
|
i = 0
|
|
min_bounds = 0, 0, 0
|
|
max_bounds = 0, 0, 0
|
|
while values.exists(X(i)):
|
|
pose_i = values.atPose3(X(i))
|
|
gtsam_plot.plot_pose3(fignum, pose_i, 10)
|
|
position = pose_i.translation().vector()
|
|
min_bounds = [min(v1, v2) for (v1, v2) in zip(position, min_bounds)]
|
|
max_bounds = [max(v1, v2) for (v1, v2) in zip(position, max_bounds)]
|
|
# max_bounds = min(pose_i.x(), max_bounds[0]), 0, 0
|
|
i += 1
|
|
|
|
# draw
|
|
axes.set_xlim3d(min_bounds[0]-1, max_bounds[0]+1)
|
|
axes.set_ylim3d(min_bounds[1]-1, max_bounds[1]+1)
|
|
axes.set_zlim3d(min_bounds[2]-1, max_bounds[2]+1)
|
|
plt.pause(1)
|
|
|
|
|
|
# IMU preintegration parameters
|
|
# Default Params for a Z-up navigation frame, such as ENU: gravity points along negative Z-axis
|
|
g = 9.81
|
|
n_gravity = vector3(0, 0, -g)
|
|
PARAMS = gtsam.PreintegrationParams.MakeSharedU(g)
|
|
I = np.eye(3)
|
|
PARAMS.setAccelerometerCovariance(I * 0.1)
|
|
PARAMS.setGyroscopeCovariance(I * 0.1)
|
|
PARAMS.setIntegrationCovariance(I * 0.1)
|
|
PARAMS.setUse2ndOrderCoriolis(False)
|
|
PARAMS.setOmegaCoriolis(vector3(0, 0, 0))
|
|
|
|
BIAS_COVARIANCE = gtsam.noiseModel_Isotropic.Variance(6, 0.1)
|
|
DELTA = gtsam.Pose3(gtsam.Rot3.Rodrigues(0, 0, 0),
|
|
gtsam.Point3(0.05, -0.10, 0.20))
|
|
|
|
|
|
def IMU_example():
|
|
"""Run iSAM 2 example with IMU factor."""
|
|
|
|
# Start with a camera on x-axis looking at origin
|
|
radius = 30
|
|
up = gtsam.Point3(0, 0, 1)
|
|
target = gtsam.Point3(0, 0, 0)
|
|
position = gtsam.Point3(radius, 0, 0)
|
|
camera = gtsam.SimpleCamera.Lookat(position, target, up, gtsam.Cal3_S2())
|
|
pose_0 = camera.pose()
|
|
|
|
# Create the set of ground-truth landmarks and poses
|
|
angular_velocity = math.radians(180) # rad/sec
|
|
delta_t = 1.0/18 # makes for 10 degrees per step
|
|
|
|
angular_velocity_vector = vector3(0, -angular_velocity, 0)
|
|
linear_velocity_vector = vector3(radius * angular_velocity, 0, 0)
|
|
scenario = gtsam.ConstantTwistScenario(
|
|
angular_velocity_vector, linear_velocity_vector, pose_0)
|
|
|
|
# Create a factor graph
|
|
newgraph = gtsam.NonlinearFactorGraph()
|
|
|
|
# Create (incremental) ISAM2 solver
|
|
isam = gtsam.ISAM2()
|
|
|
|
# Create the initial estimate to the solution
|
|
# Intentionally initialize the variables off from the ground truth
|
|
initialEstimate = gtsam.Values()
|
|
|
|
# Add a prior on pose x0. This indirectly specifies where the origin is.
|
|
# 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
|
|
noise = gtsam.noiseModel_Diagonal.Sigmas(
|
|
np.array([0.3, 0.3, 0.3, 0.1, 0.1, 0.1]))
|
|
newgraph.push_back(gtsam.PriorFactorPose3(X(0), pose_0, noise))
|
|
|
|
# Add imu priors
|
|
biasKey = gtsam.symbol(ord('b'), 0)
|
|
biasnoise = gtsam.noiseModel_Isotropic.Sigma(6, 0.1)
|
|
biasprior = gtsam.PriorFactorConstantBias(biasKey, gtsam.imuBias_ConstantBias(),
|
|
biasnoise)
|
|
newgraph.push_back(biasprior)
|
|
initialEstimate.insert(biasKey, gtsam.imuBias_ConstantBias())
|
|
velnoise = gtsam.noiseModel_Isotropic.Sigma(3, 0.1)
|
|
|
|
# Calculate with correct initial velocity
|
|
n_velocity = vector3(0, angular_velocity * radius, 0)
|
|
velprior = gtsam.PriorFactorVector(V(0), n_velocity, velnoise)
|
|
newgraph.push_back(velprior)
|
|
initialEstimate.insert(V(0), n_velocity)
|
|
|
|
accum = gtsam.PreintegratedImuMeasurements(PARAMS)
|
|
|
|
# Simulate poses and imu measurements, adding them to the factor graph
|
|
for i in range(80):
|
|
t = i * delta_t # simulation time
|
|
if i == 0: # First time add two poses
|
|
pose_1 = scenario.pose(delta_t)
|
|
initialEstimate.insert(X(0), pose_0.compose(DELTA))
|
|
initialEstimate.insert(X(1), pose_1.compose(DELTA))
|
|
elif i >= 2: # Add more poses as necessary
|
|
pose_i = scenario.pose(t)
|
|
initialEstimate.insert(X(i), pose_i.compose(DELTA))
|
|
|
|
if i > 0:
|
|
# Add Bias variables periodically
|
|
if i % 5 == 0:
|
|
biasKey += 1
|
|
factor = gtsam.BetweenFactorConstantBias(
|
|
biasKey - 1, biasKey, gtsam.imuBias_ConstantBias(), BIAS_COVARIANCE)
|
|
newgraph.add(factor)
|
|
initialEstimate.insert(biasKey, gtsam.imuBias_ConstantBias())
|
|
|
|
# Predict acceleration and gyro measurements in (actual) body frame
|
|
nRb = scenario.rotation(t).matrix()
|
|
bRn = np.transpose(nRb)
|
|
measuredAcc = scenario.acceleration_b(t) - np.dot(bRn, n_gravity)
|
|
measuredOmega = scenario.omega_b(t)
|
|
accum.integrateMeasurement(measuredAcc, measuredOmega, delta_t)
|
|
|
|
# Add Imu Factor
|
|
imufac = gtsam.ImuFactor(
|
|
X(i - 1), V(i - 1), X(i), V(i), biasKey, accum)
|
|
newgraph.add(imufac)
|
|
|
|
# insert new velocity, which is wrong
|
|
initialEstimate.insert(V(i), n_velocity)
|
|
accum.resetIntegration()
|
|
|
|
# Incremental solution
|
|
isam.update(newgraph, initialEstimate)
|
|
result = isam.calculateEstimate()
|
|
ISAM2_plot(result)
|
|
|
|
# reset
|
|
newgraph = gtsam.NonlinearFactorGraph()
|
|
initialEstimate.clear()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
IMU_example()
|