gtsam/timing/timeSFMBAL.h

96 lines
2.6 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file timeSFMBAL.h
* @brief Common code for timeSFMBAL scripts
* @author Frank Dellaert
* @date July 5, 2015
*/
#include <gtsam/slam/dataset.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/linear/NoiseModel.h>
#include <gtsam/inference/Ordering.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/base/timing.h>
#include <string>
#include <vector>
using namespace std;
using namespace gtsam;
using symbol_shorthand::C;
using symbol_shorthand::K;
using symbol_shorthand::P;
static bool gUseSchur = true;
static SharedNoiseModel gNoiseModel = noiseModel::Unit::Create(2);
// parse options and read BAL file
SfM_Data preamble(int argc, char* argv[]) {
// primitive argument parsing:
if (argc > 2) {
if (strcmp(argv[1], "--colamd"))
gUseSchur = false;
else
throw runtime_error("Usage: timeSFMBALxxx [--colamd] [BALfile]");
}
// Load BAL file
SfM_Data db;
string filename;
if (argc > 1)
filename = argv[argc - 1];
else
filename = findExampleDataFile("dubrovnik-16-22106-pre");
bool success = readBAL(filename, db);
if (!success) throw runtime_error("Could not access file!");
return db;
}
// Create ordering and optimize
int optimize(const SfM_Data& db, const NonlinearFactorGraph& graph,
const Values& initial, bool separateCalibration = false) {
using symbol_shorthand::P;
// Set parameters to be similar to ceres
LevenbergMarquardtParams params;
LevenbergMarquardtParams::SetCeresDefaults(&params);
// params.setLinearSolverType("SEQUENTIAL_CHOLESKY");
// params.setVerbosityLM("SUMMARY");
if (gUseSchur) {
// Create Schur-complement ordering
Ordering ordering;
for (size_t j = 0; j < db.number_tracks(); j++) ordering.push_back(P(j));
for (size_t i = 0; i < db.number_cameras(); i++) {
ordering.push_back(C(i));
if (separateCalibration) ordering.push_back(K(i));
}
params.setOrdering(ordering);
}
// Optimize
{
gttic_(optimize);
LevenbergMarquardtOptimizer lm(graph, initial, params);
Values result = lm.optimize();
}
tictoc_finishedIteration_();
tictoc_print_();
return 0;
}