1056 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			1056 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  *  @file   testGaussianFactorGraphB.cpp
 | |
|  *  @brief  Unit tests for Linear Factor Graph
 | |
|  *  @author Christian Potthast
 | |
|  **/
 | |
| 
 | |
| #include <gtsam/slam/smallExample.h>
 | |
| #include <gtsam/nonlinear/Symbol.h>
 | |
| #include <gtsam/linear/GaussianBayesNet.h>
 | |
| #include <gtsam/linear/GaussianSequentialSolver.h>
 | |
| #include <gtsam/inference/SymbolicFactorGraph.h>
 | |
| #include <gtsam/base/numericalDerivative.h>
 | |
| #include <gtsam/base/Matrix.h>
 | |
| #include <gtsam/base/Testable.h>
 | |
| 
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| 
 | |
| #include <boost/foreach.hpp>
 | |
| #include <boost/tuple/tuple.hpp>
 | |
| #include <boost/assign/std/list.hpp> // for operator +=
 | |
| #include <boost/assign/std/set.hpp> // for operator +=
 | |
| #include <boost/assign/std/vector.hpp> // for operator +=
 | |
| using namespace boost::assign;
 | |
| 
 | |
| #include <string.h>
 | |
| #include <iostream>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| using namespace example;
 | |
| 
 | |
| double tol=1e-5;
 | |
| 
 | |
| using symbol_shorthand::X;
 | |
| using symbol_shorthand::L;
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, equals ) {
 | |
| 
 | |
|   Ordering ordering; ordering += X(1),X(2),L(1);
 | |
|   GaussianFactorGraph fg = createGaussianFactorGraph(ordering);
 | |
|   GaussianFactorGraph fg2 = createGaussianFactorGraph(ordering);
 | |
|   EXPECT(fg.equals(fg2));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| //TEST( GaussianFactorGraph, error ) {
 | |
| //  Ordering ordering; ordering += X(1),X(2),L(1);
 | |
| //  FactorGraph<JacobianFactor> fg = createGaussianFactorGraph(ordering);
 | |
| //  VectorValues cfg = createZeroDelta(ordering);
 | |
| //
 | |
| //  // note the error is the same as in testNonlinearFactorGraph as a
 | |
| //  // zero delta config in the linear graph is equivalent to noisy in
 | |
| //  // non-linear, which is really linear under the hood
 | |
| //  double actual = fg.error(cfg);
 | |
| //  DOUBLES_EQUAL( 5.625, actual, 1e-9 );
 | |
| //}
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| /* unit test for find seperator                                              */
 | |
| /* ************************************************************************* */
 | |
| // SL-NEEDED? TEST( GaussianFactorGraph, find_separator )
 | |
| //{
 | |
| //  GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| //
 | |
| //  set<Symbol> separator = fg.find_separator(X(2));
 | |
| //  set<Symbol> expected;
 | |
| //  expected.insert(X(1));
 | |
| //  expected.insert(L(1));
 | |
| //
 | |
| //  EXPECT(separator.size()==expected.size());
 | |
| //  set<Symbol>::iterator it1 = separator.begin(), it2 = expected.begin();
 | |
| //  for(; it1!=separator.end(); it1++, it2++)
 | |
| //    EXPECT(*it1 == *it2);
 | |
| //}
 | |
| 
 | |
| ///* ************************************************************************* */
 | |
| // SL-FIX TEST( GaussianFactorGraph, combine_factors_x1 )
 | |
| //{
 | |
| //  // create a small example for a linear factor graph
 | |
| //  GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| //
 | |
| //  // combine all factors
 | |
| //  GaussianFactor::shared_ptr actual = removeAndCombineFactors(fg,X(1));
 | |
| //
 | |
| //  // the expected linear factor
 | |
| //  Matrix Al1 = Matrix_(6,2,
 | |
| //			 0., 0.,
 | |
| //			 0., 0.,
 | |
| //			 0., 0.,
 | |
| //			 0., 0.,
 | |
| //			 5., 0.,
 | |
| //			 0., 5.
 | |
| //			 );
 | |
| //
 | |
| //  Matrix Ax1 = Matrix_(6,2,
 | |
| //			 10., 0.,
 | |
| //			 0., 10.,
 | |
| //			-10., 0.,
 | |
| //			 0.,-10.,
 | |
| //			-5., 0.,
 | |
| //			 0.,-5.
 | |
| //			 );
 | |
| //
 | |
| //  Matrix Ax2 = Matrix_(6,2,
 | |
| //			 0., 0.,
 | |
| //			 0., 0.,
 | |
| //			 10., 0.,
 | |
| //			 0., 10.,
 | |
| //			 0., 0.,
 | |
| //			 0., 0.
 | |
| //			 );
 | |
| //
 | |
| //  // the expected RHS vector
 | |
| //  Vector b(6);
 | |
| //  b(0) = -1;
 | |
| //  b(1) = -1;
 | |
| //  b(2) =  2;
 | |
| //  b(3) = -1;
 | |
| //  b(4) =  0;
 | |
| //  b(5) =  1;
 | |
| //
 | |
| //  vector<pair<Symbol, Matrix> > meas;
 | |
| //  meas.push_back(make_pair(L(1), Al1));
 | |
| //  meas.push_back(make_pair(X(1), Ax1));
 | |
| //  meas.push_back(make_pair(X(2), Ax2));
 | |
| //  GaussianFactor expected(meas, b, ones(6));
 | |
| //  //GaussianFactor expected(L(1), Al1, X(1), Ax1, X(2), Ax2, b);
 | |
| //
 | |
| //  // check if the two factors are the same
 | |
| //  EXPECT(assert_equal(expected,*actual));
 | |
| //}
 | |
| //
 | |
| ///* ************************************************************************* */
 | |
| // SL-FIX TEST( GaussianFactorGraph, combine_factors_x2 )
 | |
| //{
 | |
| // // create a small example for a linear factor graph
 | |
| //  GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| //
 | |
| //  // combine all factors
 | |
| //  GaussianFactor::shared_ptr actual = removeAndCombineFactors(fg,X(2));
 | |
| //
 | |
| //  // the expected linear factor
 | |
| //  Matrix Al1 = Matrix_(4,2,
 | |
| //			 // l1
 | |
| //			 0., 0.,
 | |
| //			 0., 0.,
 | |
| //			 5., 0.,
 | |
| //			 0., 5.
 | |
| //			 );
 | |
| //
 | |
| //  Matrix Ax1 = Matrix_(4,2,
 | |
| //                         // x1
 | |
| //			-10., 0., // f2
 | |
| //			 0.,-10., // f2
 | |
| //			 0., 0., // f4
 | |
| //			 0., 0.  // f4
 | |
| //			 );
 | |
| //
 | |
| //  Matrix Ax2 = Matrix_(4,2,
 | |
| //			 // x2
 | |
| //			 10., 0.,
 | |
| //			 0., 10.,
 | |
| //			-5., 0.,
 | |
| //			 0.,-5.
 | |
| //			 );
 | |
| //
 | |
| //  // the expected RHS vector
 | |
| //  Vector b(4);
 | |
| //  b(0) =  2;
 | |
| //  b(1) = -1;
 | |
| //  b(2) = -1;
 | |
| //  b(3) =  1.5;
 | |
| //
 | |
| //  vector<pair<Symbol, Matrix> > meas;
 | |
| //  meas.push_back(make_pair(L(1), Al1));
 | |
| //  meas.push_back(make_pair(X(1), Ax1));
 | |
| //  meas.push_back(make_pair(X(2), Ax2));
 | |
| //  GaussianFactor expected(meas, b, ones(4));
 | |
| //
 | |
| //  // check if the two factors are the same
 | |
| //  EXPECT(assert_equal(expected,*actual));
 | |
| //}
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, eliminateOne_x1 )
 | |
| {
 | |
|   Ordering ordering; ordering += X(1),L(1),X(2);
 | |
|   GaussianFactorGraph fg = createGaussianFactorGraph(ordering);
 | |
| 
 | |
|   GaussianFactorGraph::FactorizationResult result = inference::eliminateOne(fg, 0, EliminateQR);
 | |
| 
 | |
|   // create expected Conditional Gaussian
 | |
|   Matrix I = 15*eye(2), R11 = I, S12 = -0.111111*I, S13 = -0.444444*I;
 | |
|   Vector d = Vector_(2, -0.133333, -0.0222222), sigma = ones(2);
 | |
|   GaussianConditional expected(ordering[X(1)],15*d,R11,ordering[L(1)],S12,ordering[X(2)],S13,sigma);
 | |
| 
 | |
|   EXPECT(assert_equal(expected,*result.first,tol));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, eliminateOne_x2 )
 | |
| {
 | |
|   Ordering ordering; ordering += X(2),L(1),X(1);
 | |
|   GaussianFactorGraph fg = createGaussianFactorGraph(ordering);
 | |
|   GaussianConditional::shared_ptr actual = inference::eliminateOne(fg, 0, EliminateQR).first;
 | |
| 
 | |
|   // create expected Conditional Gaussian
 | |
|   double sig = 0.0894427;
 | |
|   Matrix I = eye(2)/sig, R11 = I, S12 = -0.2*I, S13 = -0.8*I;
 | |
|   Vector d = Vector_(2, 0.2, -0.14)/sig, sigma = ones(2);
 | |
|   GaussianConditional expected(ordering[X(2)],d,R11,ordering[L(1)],S12,ordering[X(1)],S13,sigma);
 | |
| 
 | |
|   EXPECT(assert_equal(expected,*actual,tol));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, eliminateOne_l1 )
 | |
| {
 | |
|   Ordering ordering; ordering += L(1),X(1),X(2);
 | |
|   GaussianFactorGraph fg = createGaussianFactorGraph(ordering);
 | |
|   GaussianConditional::shared_ptr actual = inference::eliminateOne(fg, 0, EliminateQR).first;
 | |
| 
 | |
|   // create expected Conditional Gaussian
 | |
|   double sig = sqrt(2)/10.;
 | |
|   Matrix I = eye(2)/sig, R11 = I, S12 = -0.5*I, S13 = -0.5*I;
 | |
|   Vector d = Vector_(2, -0.1, 0.25)/sig, sigma = ones(2);
 | |
|   GaussianConditional expected(ordering[L(1)],d,R11,ordering[X(1)],S12,ordering[X(2)],S13,sigma);
 | |
| 
 | |
|   EXPECT(assert_equal(expected,*actual,tol));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, eliminateOne_x1_fast )
 | |
| {
 | |
|   Ordering ordering; ordering += X(1),L(1),X(2);
 | |
|   GaussianFactorGraph fg = createGaussianFactorGraph(ordering);
 | |
|   GaussianFactorGraph::FactorizationResult result = inference::eliminateOne(fg, ordering[X(1)], EliminateQR);
 | |
|   GaussianConditional::shared_ptr conditional = result.first;
 | |
|   GaussianFactorGraph remaining = result.second;
 | |
| 
 | |
|   // create expected Conditional Gaussian
 | |
|   Matrix I = 15*eye(2), R11 = I, S12 = -0.111111*I, S13 = -0.444444*I;
 | |
|   Vector d = Vector_(2, -0.133333, -0.0222222), sigma = ones(2);
 | |
|   GaussianConditional expected(ordering[X(1)],15*d,R11,ordering[L(1)],S12,ordering[X(2)],S13,sigma);
 | |
| 
 | |
|   // Create expected remaining new factor
 | |
|   JacobianFactor expectedFactor(1, Matrix_(4,2,
 | |
|              4.714045207910318,                   0.,
 | |
|                              0.,   4.714045207910318,
 | |
|                              0.,                   0.,
 | |
|                              0.,                   0.),
 | |
|      2, Matrix_(4,2,
 | |
|            -2.357022603955159,                   0.,
 | |
|                             0.,  -2.357022603955159,
 | |
|             7.071067811865475,                   0.,
 | |
|                             0.,   7.071067811865475),
 | |
|      Vector_(4, -0.707106781186547, 0.942809041582063, 0.707106781186547, -1.414213562373094), sharedUnit(4));
 | |
| 
 | |
|   EXPECT(assert_equal(expected,*conditional,tol));
 | |
|   EXPECT(assert_equal((const GaussianFactor&)expectedFactor,*remaining.back(),tol));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, eliminateOne_x2_fast )
 | |
| {
 | |
|   Ordering ordering; ordering += X(1),L(1),X(2);
 | |
|   GaussianFactorGraph fg = createGaussianFactorGraph(ordering);
 | |
|   GaussianConditional::shared_ptr actual = inference::eliminateOne(fg, ordering[X(2)], EliminateQR).first;
 | |
| 
 | |
|   // create expected Conditional Gaussian
 | |
|   double sig = 0.0894427;
 | |
|   Matrix I = eye(2)/sig, R11 = I, S12 = -0.2*I, S13 = -0.8*I;
 | |
|   Vector d = Vector_(2, 0.2, -0.14)/sig, sigma = ones(2);
 | |
|   GaussianConditional expected(ordering[X(2)],d,R11,ordering[X(1)],S13,ordering[L(1)],S12,sigma);
 | |
| 
 | |
|   EXPECT(assert_equal(expected,*actual,tol));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, eliminateOne_l1_fast )
 | |
| {
 | |
|   Ordering ordering; ordering += X(1),L(1),X(2);
 | |
|   GaussianFactorGraph fg = createGaussianFactorGraph(ordering);
 | |
|   GaussianConditional::shared_ptr actual = inference::eliminateOne(fg, ordering[L(1)], EliminateQR).first;
 | |
| 
 | |
|   // create expected Conditional Gaussian
 | |
|   double sig = sqrt(2)/10.;
 | |
|   Matrix I = eye(2)/sig, R11 = I, S12 = -0.5*I, S13 = -0.5*I;
 | |
|   Vector d = Vector_(2, -0.1, 0.25)/sig, sigma = ones(2);
 | |
|   GaussianConditional expected(ordering[L(1)],d,R11,ordering[X(1)],S12,ordering[X(2)],S13,sigma);
 | |
| 
 | |
|   EXPECT(assert_equal(expected,*actual,tol));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, eliminateAll )
 | |
| {
 | |
| 	// create expected Chordal bayes Net
 | |
| 	Matrix I = eye(2);
 | |
| 
 | |
|   Ordering ordering;
 | |
|   ordering += X(2),L(1),X(1);
 | |
| 
 | |
| 	Vector d1 = Vector_(2, -0.1,-0.1);
 | |
| 	GaussianBayesNet expected = simpleGaussian(ordering[X(1)],d1,0.1);
 | |
| 
 | |
| 	double sig1 = 0.149071;
 | |
| 	Vector d2 = Vector_(2, 0.0, 0.2)/sig1, sigma2 = ones(2);
 | |
| 	push_front(expected,ordering[L(1)],d2, I/sig1,ordering[X(1)], (-1)*I/sig1,sigma2);
 | |
| 
 | |
| 	double sig2 = 0.0894427;
 | |
| 	Vector d3 = Vector_(2, 0.2, -0.14)/sig2, sigma3 = ones(2);
 | |
| 	push_front(expected,ordering[X(2)],d3, I/sig2,ordering[L(1)], (-0.2)*I/sig2, ordering[X(1)], (-0.8)*I/sig2, sigma3);
 | |
| 
 | |
| 	// Check one ordering
 | |
| 	GaussianFactorGraph fg1 = createGaussianFactorGraph(ordering);
 | |
| 	GaussianBayesNet actual = *GaussianSequentialSolver(fg1).eliminate();
 | |
| 	EXPECT(assert_equal(expected,actual,tol));
 | |
| 
 | |
|   GaussianBayesNet actualQR = *GaussianSequentialSolver(fg1, true).eliminate();
 | |
|   EXPECT(assert_equal(expected,actualQR,tol));
 | |
| }
 | |
| 
 | |
| ///* ************************************************************************* */
 | |
| //TEST( GaussianFactorGraph, eliminateAll_fast )
 | |
| //{
 | |
| //	// create expected Chordal bayes Net
 | |
| //	Matrix I = eye(2);
 | |
| //
 | |
| //	Vector d1 = Vector_(2, -0.1,-0.1);
 | |
| //	GaussianBayesNet expected = simpleGaussian(X(1),d1,0.1);
 | |
| //
 | |
| //	double sig1 = 0.149071;
 | |
| //	Vector d2 = Vector_(2, 0.0, 0.2)/sig1, sigma2 = ones(2);
 | |
| //	push_front(expected,L(1),d2, I/sig1,X(1), (-1)*I/sig1,sigma2);
 | |
| //
 | |
| //	double sig2 = 0.0894427;
 | |
| //	Vector d3 = Vector_(2, 0.2, -0.14)/sig2, sigma3 = ones(2);
 | |
| //	push_front(expected,X(2),d3, I/sig2,L(1), (-0.2)*I/sig2, X(1), (-0.8)*I/sig2, sigma3);
 | |
| //
 | |
| //	// Check one ordering
 | |
| //	GaussianFactorGraph fg1 = createGaussianFactorGraph();
 | |
| //	Ordering ordering;
 | |
| //	ordering += X(2),L(1),X(1);
 | |
| //	GaussianBayesNet actual = fg1.eliminate(ordering, false);
 | |
| //	EXPECT(assert_equal(expected,actual,tol));
 | |
| //}
 | |
| 
 | |
| ///* ************************************************************************* */
 | |
| //TEST( GaussianFactorGraph, add_priors )
 | |
| //{
 | |
| //  Ordering ordering; ordering += L(1),X(1),X(2);
 | |
| //  GaussianFactorGraph fg = createGaussianFactorGraph(ordering);
 | |
| //  GaussianFactorGraph actual = fg.add_priors(3, vector<size_t>(3,2));
 | |
| //  GaussianFactorGraph expected = createGaussianFactorGraph(ordering);
 | |
| //  Matrix A = eye(2);
 | |
| //  Vector b = zero(2);
 | |
| //  SharedDiagonal sigma = sharedSigma(2,3.0);
 | |
| //  expected.push_back(GaussianFactor::shared_ptr(new JacobianFactor(ordering[L(1)],A,b,sigma)));
 | |
| //  expected.push_back(GaussianFactor::shared_ptr(new JacobianFactor(ordering[X(1)],A,b,sigma)));
 | |
| //  expected.push_back(GaussianFactor::shared_ptr(new JacobianFactor(ordering[X(2)],A,b,sigma)));
 | |
| //  EXPECT(assert_equal(expected,actual));
 | |
| //}
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, copying )
 | |
| {
 | |
|   // Create a graph
 | |
|   Ordering ordering; ordering += X(2),L(1),X(1);
 | |
|   GaussianFactorGraph actual = createGaussianFactorGraph(ordering);
 | |
| 
 | |
|   // Copy the graph !
 | |
|   GaussianFactorGraph copy = actual;
 | |
| 
 | |
|   // now eliminate the copy
 | |
|   GaussianBayesNet actual1 = *GaussianSequentialSolver(copy).eliminate();
 | |
| 
 | |
|   // Create the same graph, but not by copying
 | |
|   GaussianFactorGraph expected = createGaussianFactorGraph(ordering);
 | |
| 
 | |
|   // and check that original is still the same graph
 | |
|   EXPECT(assert_equal(expected,actual));
 | |
| }
 | |
| 
 | |
| ///* ************************************************************************* */
 | |
| // SL-FIX TEST( GaussianFactorGraph, matrix )
 | |
| //{
 | |
| //  // render with a given ordering
 | |
| //  Ordering ord;
 | |
| //  ord += X(2),L(1),X(1);
 | |
| //
 | |
| //  // Create a graph
 | |
| //  GaussianFactorGraph fg = createGaussianFactorGraph(ordering);
 | |
| //
 | |
| //  Matrix A; Vector b;
 | |
| //  boost::tie(A,b) = fg.matrix();
 | |
| //
 | |
| //  Matrix A1 = Matrix_(2*4,3*2,
 | |
| //		     +0.,  0.,  0.,  0., 10.,  0., // unary factor on x1 (prior)
 | |
| //		     +0.,  0.,  0.,  0.,  0., 10.,
 | |
| //		     10.,  0.,  0.,  0.,-10.,  0., // binary factor on x2,x1 (odometry)
 | |
| //		     +0., 10.,  0.,  0.,  0.,-10.,
 | |
| //		     +0.,  0.,  5.,  0., -5.,  0., // binary factor on l1,x1 (z1)
 | |
| //		     +0.,  0.,  0.,  5.,  0., -5.,
 | |
| //		     -5.,  0.,  5.,  0.,  0.,  0., // binary factor on x2,l1 (z2)
 | |
| //		     +0., -5.,  0.,  5.,  0.,  0.
 | |
| //    );
 | |
| //  Vector b1 = Vector_(8,-1., -1., 2., -1., 0., 1., -1., 1.5);
 | |
| //
 | |
| //  EQUALITY(A,A1);
 | |
| //  EXPECT(b==b1);
 | |
| //}
 | |
| 
 | |
| ///* ************************************************************************* */
 | |
| // SL-FIX TEST( GaussianFactorGraph, sizeOfA )
 | |
| //{
 | |
| //	// create a small linear factor graph
 | |
| //	GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| //
 | |
| //  pair<size_t, size_t> mn = fg.sizeOfA();
 | |
| //  EXPECT(8 == mn.first);
 | |
| //  EXPECT(6 == mn.second);
 | |
| //}
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, CONSTRUCTOR_GaussianBayesNet )
 | |
| {
 | |
|   Ordering ord;
 | |
|   ord += X(2),L(1),X(1);
 | |
|   GaussianFactorGraph fg = createGaussianFactorGraph(ord);
 | |
| 
 | |
|   // render with a given ordering
 | |
|   GaussianBayesNet CBN = *GaussianSequentialSolver(fg).eliminate();
 | |
| 
 | |
|   // True GaussianFactorGraph
 | |
|   GaussianFactorGraph fg2(CBN);
 | |
|   GaussianBayesNet CBN2 = *GaussianSequentialSolver(fg2).eliminate();
 | |
|   EXPECT(assert_equal(CBN,CBN2));
 | |
| 
 | |
|   // Base FactorGraph only
 | |
| //  FactorGraph<GaussianFactor> fg3(CBN);
 | |
| //  GaussianBayesNet CBN3 = gtsam::eliminate<GaussianFactor,GaussianConditional>(fg3,ord);
 | |
| //  EXPECT(assert_equal(CBN,CBN3));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, getOrdering)
 | |
| {
 | |
|   Ordering original; original += L(1),X(1),X(2);
 | |
|   FactorGraph<IndexFactor> symbolic(createGaussianFactorGraph(original));
 | |
|   Permutation perm(*inference::PermutationCOLAMD(VariableIndex(symbolic)));
 | |
|   Ordering actual = original; actual.permuteWithInverse((*perm.inverse()));
 | |
|   Ordering expected; expected += L(1),X(2),X(1);
 | |
|   EXPECT(assert_equal(expected,actual));
 | |
| }
 | |
| 
 | |
| // SL-FIX TEST( GaussianFactorGraph, getOrdering2)
 | |
| //{
 | |
| //  Ordering expected;
 | |
| //  expected += L(1),X(1);
 | |
| //  GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| //  set<Symbol> interested; interested += L(1),X(1);
 | |
| //  Ordering actual = fg.getOrdering(interested);
 | |
| //  EXPECT(assert_equal(expected,actual));
 | |
| //}
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, optimize_Cholesky )
 | |
| {
 | |
|   // create an ordering
 | |
|   Ordering ord; ord += X(2),L(1),X(1);
 | |
| 
 | |
|   // create a graph
 | |
| 	GaussianFactorGraph fg = createGaussianFactorGraph(ord);
 | |
| 
 | |
| 	// optimize the graph
 | |
| 	VectorValues actual = *GaussianSequentialSolver(fg, false).optimize();
 | |
| 
 | |
| 	// verify
 | |
| 	VectorValues expected = createCorrectDelta(ord);
 | |
| 
 | |
|   EXPECT(assert_equal(expected,actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, optimize_QR )
 | |
| {
 | |
|   // create an ordering
 | |
|   Ordering ord; ord += X(2),L(1),X(1);
 | |
| 
 | |
|   // create a graph
 | |
| 	GaussianFactorGraph fg = createGaussianFactorGraph(ord);
 | |
| 
 | |
| 	// optimize the graph
 | |
| 	VectorValues actual = *GaussianSequentialSolver(fg, true).optimize();
 | |
| 
 | |
| 	// verify
 | |
| 	VectorValues expected = createCorrectDelta(ord);
 | |
| 
 | |
|   EXPECT(assert_equal(expected,actual));
 | |
| }
 | |
| 
 | |
| ///* ************************************************************************* */
 | |
| // SL-FIX TEST( GaussianFactorGraph, optimizeMultiFrontlas )
 | |
| //{
 | |
| //  // create an ordering
 | |
| //  Ordering ord; ord += X(2),L(1),X(1);
 | |
| //
 | |
| //	// create a graph
 | |
| //	GaussianFactorGraph fg = createGaussianFactorGraph(ord);
 | |
| //
 | |
| //	// optimize the graph
 | |
| //	VectorValues actual = fg.optimizeMultiFrontals(ord);
 | |
| //
 | |
| //	// verify
 | |
| //	VectorValues expected = createCorrectDelta();
 | |
| //
 | |
| //  EXPECT(assert_equal(expected,actual));
 | |
| //}
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, combine)
 | |
| {
 | |
|   // create an ordering
 | |
|   Ordering ord; ord += X(2),L(1),X(1);
 | |
| 
 | |
|   // create a test graph
 | |
| 	GaussianFactorGraph fg1 = createGaussianFactorGraph(ord);
 | |
| 
 | |
| 	// create another factor graph
 | |
| 	GaussianFactorGraph fg2 = createGaussianFactorGraph(ord);
 | |
| 
 | |
| 	// get sizes
 | |
| 	size_t size1 = fg1.size();
 | |
| 	size_t size2 = fg2.size();
 | |
| 
 | |
| 	// combine them
 | |
| 	fg1.combine(fg2);
 | |
| 
 | |
| 	EXPECT(size1+size2 == fg1.size());
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, combine2)
 | |
| {
 | |
|   // create an ordering
 | |
|   Ordering ord; ord += X(2),L(1),X(1);
 | |
| 
 | |
| 	// create a test graph
 | |
| 	GaussianFactorGraph fg1 = createGaussianFactorGraph(ord);
 | |
| 
 | |
| 	// create another factor graph
 | |
| 	GaussianFactorGraph fg2 = createGaussianFactorGraph(ord);
 | |
| 
 | |
| 	// get sizes
 | |
| 	size_t size1 = fg1.size();
 | |
| 	size_t size2 = fg2.size();
 | |
| 
 | |
| 	// combine them
 | |
| 	GaussianFactorGraph fg3 = GaussianFactorGraph::combine2(fg1, fg2);
 | |
| 
 | |
| 	EXPECT(size1+size2 == fg3.size());
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // print a vector of ints if needed for debugging
 | |
| void print(vector<int> v) {
 | |
| 	for (size_t k = 0; k < v.size(); k++)
 | |
| 		cout << v[k] << " ";
 | |
| 	cout << endl;
 | |
| }
 | |
| 
 | |
| ///* ************************************************************************* */
 | |
| // SL-NEEDED? TEST( GaussianFactorGraph, factor_lookup)
 | |
| //{
 | |
| //	// create a test graph
 | |
| //	GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| //
 | |
| //	// ask for all factor indices connected to x1
 | |
| //	list<size_t> x1_factors = fg.factors(X(1));
 | |
| //	size_t x1_indices[] = { 0, 1, 2 };
 | |
| //	list<size_t> x1_expected(x1_indices, x1_indices + 3);
 | |
| //	EXPECT(x1_factors==x1_expected);
 | |
| //
 | |
| //	// ask for all factor indices connected to x2
 | |
| //	list<size_t> x2_factors = fg.factors(X(2));
 | |
| //	size_t x2_indices[] = { 1, 3 };
 | |
| //	list<size_t> x2_expected(x2_indices, x2_indices + 2);
 | |
| //	EXPECT(x2_factors==x2_expected);
 | |
| //}
 | |
| 
 | |
| ///* ************************************************************************* */
 | |
| // SL-NEEDED? TEST( GaussianFactorGraph, findAndRemoveFactors )
 | |
| //{
 | |
| //	// create the graph
 | |
| //	GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| //
 | |
| //  // We expect to remove these three factors: 0, 1, 2
 | |
| //  GaussianFactor::shared_ptr f0 = fg[0];
 | |
| //  GaussianFactor::shared_ptr f1 = fg[1];
 | |
| //  GaussianFactor::shared_ptr f2 = fg[2];
 | |
| //
 | |
| //  // call the function
 | |
| //  vector<GaussianFactor::shared_ptr> factors = fg.findAndRemoveFactors(X(1));
 | |
| //
 | |
| //  // Check the factors
 | |
| //  EXPECT(f0==factors[0]);
 | |
| //  EXPECT(f1==factors[1]);
 | |
| //  EXPECT(f2==factors[2]);
 | |
| //
 | |
| //  // EXPECT if the factors are deleted from the factor graph
 | |
| //  LONGS_EQUAL(1,fg.nrFactors());
 | |
| //}
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(GaussianFactorGraph, createSmoother)
 | |
| {
 | |
| 	GaussianFactorGraph fg1 = createSmoother(2).first;
 | |
| 	LONGS_EQUAL(3,fg1.size());
 | |
| 	GaussianFactorGraph fg2 = createSmoother(3).first;
 | |
| 	LONGS_EQUAL(5,fg2.size());
 | |
| }
 | |
| 
 | |
| ///* ************************************************************************* */
 | |
| // SL-NEEDED? TEST( GaussianFactorGraph, variables )
 | |
| //{
 | |
| //  GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| //  Dimensions expected;
 | |
| //  insert(expected)(L(1), 2)(X(1), 2)(X(2), 2);
 | |
| //  Dimensions actual = fg.dimensions();
 | |
| //  EXPECT(expected==actual);
 | |
| //}
 | |
| 
 | |
| ///* ************************************************************************* */
 | |
| // SL-NEEDED? TEST( GaussianFactorGraph, keys )
 | |
| //{
 | |
| //  GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| //  Ordering expected;
 | |
| //  expected += L(1),X(1),X(2);
 | |
| //  EXPECT(assert_equal(expected,fg.keys()));
 | |
| //}
 | |
| 
 | |
| ///* ************************************************************************* */
 | |
| // SL-NEEDED? TEST( GaussianFactorGraph, involves )
 | |
| //{
 | |
| //  GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| //  EXPECT(fg.involves(L(1)));
 | |
| //  EXPECT(fg.involves(X(1)));
 | |
| //  EXPECT(fg.involves(X(2)));
 | |
| //  EXPECT(!fg.involves(X(3)));
 | |
| //}
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| double error(const VectorValues& x) {
 | |
|   // create an ordering
 | |
|   Ordering ord; ord += X(2),L(1),X(1);
 | |
| 
 | |
| 	GaussianFactorGraph fg = createGaussianFactorGraph(ord);
 | |
| 	return fg.error(x);
 | |
| }
 | |
| 
 | |
| ///* ************************************************************************* */
 | |
| // SL-NEEDED? TEST( GaussianFactorGraph, gradient )
 | |
| //{
 | |
| //	GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| //
 | |
| //	// Construct expected gradient
 | |
| //	VectorValues expected;
 | |
| //
 | |
| //  // 2*f(x) = 100*(x1+c[X(1)])^2 + 100*(x2-x1-[0.2;-0.1])^2 + 25*(l1-x1-[0.0;0.2])^2 + 25*(l1-x2-[-0.2;0.3])^2
 | |
| //	// worked out: df/dx1 = 100*[0.1;0.1] + 100*[0.2;-0.1]) + 25*[0.0;0.2] = [10+20;10-10+5] = [30;5]
 | |
| //  expected.insert(L(1),Vector_(2,  5.0,-12.5));
 | |
| //  expected.insert(X(1),Vector_(2, 30.0,  5.0));
 | |
| //  expected.insert(X(2),Vector_(2,-25.0, 17.5));
 | |
| //
 | |
| //	// Check the gradient at delta=0
 | |
| //  VectorValues zero = createZeroDelta();
 | |
| //	VectorValues actual = fg.gradient(zero);
 | |
| //	EXPECT(assert_equal(expected,actual));
 | |
| //
 | |
| //	// Check it numerically for good measure
 | |
| //	Vector numerical_g = numericalGradient<VectorValues>(error,zero,0.001);
 | |
| //	EXPECT(assert_equal(Vector_(6,5.0,-12.5,30.0,5.0,-25.0,17.5),numerical_g));
 | |
| //
 | |
| //	// Check the gradient at the solution (should be zero)
 | |
| //	Ordering ord;
 | |
| //  ord += X(2),L(1),X(1);
 | |
| //	GaussianFactorGraph fg2 = createGaussianFactorGraph();
 | |
| //  VectorValues solution = fg2.optimize(ord); // destructive
 | |
| //	VectorValues actual2 = fg.gradient(solution);
 | |
| //	EXPECT(assert_equal(zero,actual2));
 | |
| //}
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, multiplication )
 | |
| {
 | |
|   // create an ordering
 | |
|   Ordering ord; ord += X(2),L(1),X(1);
 | |
| 
 | |
| 	FactorGraph<JacobianFactor> A = createGaussianFactorGraph(ord);
 | |
|   VectorValues x = createCorrectDelta(ord);
 | |
|   Errors actual = A * x;
 | |
|   Errors expected;
 | |
|   expected += Vector_(2,-1.0,-1.0);
 | |
|   expected += Vector_(2, 2.0,-1.0);
 | |
|   expected += Vector_(2, 0.0, 1.0);
 | |
|   expected += Vector_(2,-1.0, 1.5);
 | |
| 	EXPECT(assert_equal(expected,actual));
 | |
| }
 | |
| 
 | |
| ///* ************************************************************************* */
 | |
| // SL-NEEDED? TEST( GaussianFactorGraph, transposeMultiplication )
 | |
| //{
 | |
| //  // create an ordering
 | |
| //  Ordering ord; ord += X(2),L(1),X(1);
 | |
| //
 | |
| //	GaussianFactorGraph A = createGaussianFactorGraph(ord);
 | |
| //  Errors e;
 | |
| //  e += Vector_(2, 0.0, 0.0);
 | |
| //  e += Vector_(2,15.0, 0.0);
 | |
| //  e += Vector_(2, 0.0,-5.0);
 | |
| //  e += Vector_(2,-7.5,-5.0);
 | |
| //
 | |
| //  VectorValues expected = createZeroDelta(ord), actual = A ^ e;
 | |
| //  expected[ord[L(1)]] = Vector_(2, -37.5,-50.0);
 | |
| //  expected[ord[X(1)]] = Vector_(2,-150.0, 25.0);
 | |
| //  expected[ord[X(2)]] = Vector_(2, 187.5, 25.0);
 | |
| //	EXPECT(assert_equal(expected,actual));
 | |
| //}
 | |
| 
 | |
| ///* ************************************************************************* */
 | |
| // SL-NEEDED? TEST( GaussianFactorGraph, rhs )
 | |
| //{
 | |
| //  // create an ordering
 | |
| //  Ordering ord; ord += X(2),L(1),X(1);
 | |
| //
 | |
| //	GaussianFactorGraph Ab = createGaussianFactorGraph(ord);
 | |
| //	Errors expected = createZeroDelta(ord), actual = Ab.rhs();
 | |
| //  expected.push_back(Vector_(2,-1.0,-1.0));
 | |
| //  expected.push_back(Vector_(2, 2.0,-1.0));
 | |
| //  expected.push_back(Vector_(2, 0.0, 1.0));
 | |
| //  expected.push_back(Vector_(2,-1.0, 1.5));
 | |
| //	EXPECT(assert_equal(expected,actual));
 | |
| //}
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // Extra test on elimination prompted by Michael's email to Frank 1/4/2010
 | |
| TEST( GaussianFactorGraph, elimination )
 | |
| {
 | |
|   Ordering ord;
 | |
|   ord += X(1), X(2);
 | |
| 	// Create Gaussian Factor Graph
 | |
| 	GaussianFactorGraph fg;
 | |
| 	Matrix Ap = eye(1), An = eye(1) * -1;
 | |
| 	Vector b = Vector_(1, 0.0);
 | |
|   SharedDiagonal sigma = sharedSigma(1,2.0);
 | |
| 	fg.add(ord[X(1)], An, ord[X(2)], Ap, b, sigma);
 | |
| 	fg.add(ord[X(1)], Ap, b, sigma);
 | |
| 	fg.add(ord[X(2)], Ap, b, sigma);
 | |
| 
 | |
| 	// Eliminate
 | |
| 	GaussianBayesNet bayesNet = *GaussianSequentialSolver(fg).eliminate();
 | |
| 
 | |
| 	// Check sigma
 | |
| 	EXPECT_DOUBLES_EQUAL(1.0,bayesNet[ord[X(2)]]->get_sigmas()(0),1e-5);
 | |
| 
 | |
| 	// Check matrix
 | |
| 	Matrix R;Vector d;
 | |
| 	boost::tie(R,d) = matrix(bayesNet);
 | |
| 	Matrix expected = Matrix_(2,2,
 | |
| 			0.707107,	-0.353553,
 | |
| 			0.0,	 0.612372);
 | |
| 	Matrix expected2 = Matrix_(2,2,
 | |
| 			0.707107,	-0.353553,
 | |
| 			0.0,	 -0.612372);
 | |
| 	EXPECT(equal_with_abs_tol(expected, R, 1e-6) || equal_with_abs_tol(expected2, R, 1e-6));
 | |
| }
 | |
| 
 | |
|  /* ************************************************************************* */
 | |
| // Tests ported from ConstrainedGaussianFactorGraph
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, constrained_simple )
 | |
| {
 | |
| 	// get a graph with a constraint in it
 | |
| 	GaussianFactorGraph fg = createSimpleConstraintGraph();
 | |
| 	EXPECT(hasConstraints(fg));
 | |
| 
 | |
| 
 | |
| 	// eliminate and solve
 | |
| 	VectorValues actual = *GaussianSequentialSolver(fg).optimize();
 | |
| 
 | |
| 	// verify
 | |
| 	VectorValues expected = createSimpleConstraintValues();
 | |
| 	EXPECT(assert_equal(expected, actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, constrained_single )
 | |
| {
 | |
| 	// get a graph with a constraint in it
 | |
| 	GaussianFactorGraph fg = createSingleConstraintGraph();
 | |
| 	EXPECT(hasConstraints(fg));
 | |
| 
 | |
| 	// eliminate and solve
 | |
| 	VectorValues actual = *GaussianSequentialSolver(fg).optimize();
 | |
| 
 | |
| 	// verify
 | |
| 	VectorValues expected = createSingleConstraintValues();
 | |
| 	EXPECT(assert_equal(expected, actual));
 | |
| }
 | |
| 
 | |
| ///* ************************************************************************* */
 | |
| //SL-FIX TEST( GaussianFactorGraph, constrained_single2 )
 | |
| //{
 | |
| //	// get a graph with a constraint in it
 | |
| //	GaussianFactorGraph fg = createSingleConstraintGraph();
 | |
| //
 | |
| //	// eliminate and solve
 | |
| //	Ordering ord;
 | |
| //	ord += "yk, x";
 | |
| //	VectorValues actual = fg.optimize(ord);
 | |
| //
 | |
| //	// verify
 | |
| //	VectorValues expected = createSingleConstraintValues();
 | |
| //	EXPECT(assert_equal(expected, actual));
 | |
| //}
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, constrained_multi1 )
 | |
| {
 | |
| 	// get a graph with a constraint in it
 | |
| 	GaussianFactorGraph fg = createMultiConstraintGraph();
 | |
| 	EXPECT(hasConstraints(fg));
 | |
| 
 | |
| 	// eliminate and solve
 | |
|   VectorValues actual = *GaussianSequentialSolver(fg).optimize();
 | |
| 
 | |
| 	// verify
 | |
| 	VectorValues expected = createMultiConstraintValues();
 | |
| 	EXPECT(assert_equal(expected, actual));
 | |
| }
 | |
| 
 | |
| ///* ************************************************************************* */
 | |
| //SL-FIX TEST( GaussianFactorGraph, constrained_multi2 )
 | |
| //{
 | |
| //	// get a graph with a constraint in it
 | |
| //	GaussianFactorGraph fg = createMultiConstraintGraph();
 | |
| //
 | |
| //	// eliminate and solve
 | |
| //	Ordering ord;
 | |
| //	ord += "zk, xk, y";
 | |
| //	VectorValues actual = fg.optimize(ord);
 | |
| //
 | |
| //	// verify
 | |
| //	VectorValues expected = createMultiConstraintValues();
 | |
| //	EXPECT(assert_equal(expected, actual));
 | |
| //}
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| 
 | |
| SharedDiagonal model = sharedSigma(2,1);
 | |
| 
 | |
| // SL-FIX TEST( GaussianFactorGraph, findMinimumSpanningTree )
 | |
| //{
 | |
| //	GaussianFactorGraph g;
 | |
| //	Matrix I = eye(2);
 | |
| //	Vector b = Vector_(0, 0, 0);
 | |
| //	g.add(X(1), I, X(2), I, b, model);
 | |
| //	g.add(X(1), I, X(3), I, b, model);
 | |
| //	g.add(X(1), I, X(4), I, b, model);
 | |
| //	g.add(X(2), I, X(3), I, b, model);
 | |
| //	g.add(X(2), I, X(4), I, b, model);
 | |
| //	g.add(X(3), I, X(4), I, b, model);
 | |
| //
 | |
| //	map<string, string> tree = g.findMinimumSpanningTree<string, GaussianFactor>();
 | |
| //	EXPECT(tree[X(1)].compare(X(1))==0);
 | |
| //	EXPECT(tree[X(2)].compare(X(1))==0);
 | |
| //	EXPECT(tree[X(3)].compare(X(1))==0);
 | |
| //	EXPECT(tree[X(4)].compare(X(1))==0);
 | |
| //}
 | |
| 
 | |
| ///* ************************************************************************* */
 | |
| // SL-FIX TEST( GaussianFactorGraph, split )
 | |
| //{
 | |
| //	GaussianFactorGraph g;
 | |
| //	Matrix I = eye(2);
 | |
| //	Vector b = Vector_(0, 0, 0);
 | |
| //	g.add(X(1), I, X(2), I, b, model);
 | |
| //	g.add(X(1), I, X(3), I, b, model);
 | |
| //	g.add(X(1), I, X(4), I, b, model);
 | |
| //	g.add(X(2), I, X(3), I, b, model);
 | |
| //	g.add(X(2), I, X(4), I, b, model);
 | |
| //
 | |
| //	PredecessorMap<string> tree;
 | |
| //	tree[X(1)] = X(1);
 | |
| //	tree[X(2)] = X(1);
 | |
| //	tree[X(3)] = X(1);
 | |
| //	tree[X(4)] = X(1);
 | |
| //
 | |
| //	GaussianFactorGraph Ab1, Ab2;
 | |
| //  g.split<string, GaussianFactor>(tree, Ab1, Ab2);
 | |
| //	LONGS_EQUAL(3, Ab1.size());
 | |
| //	LONGS_EQUAL(2, Ab2.size());
 | |
| //}
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(GaussianFactorGraph, replace)
 | |
| {
 | |
|   Ordering ord; ord += X(1),X(2),X(3),X(4),X(5),X(6);
 | |
| 	SharedDiagonal noise(sharedSigma(3, 1.0));
 | |
| 
 | |
| 	GaussianFactorGraph::sharedFactor f1(new JacobianFactor(
 | |
| 	    ord[X(1)], eye(3,3), ord[X(2)], eye(3,3), zero(3), noise));
 | |
| 	GaussianFactorGraph::sharedFactor f2(new JacobianFactor(
 | |
| 	    ord[X(2)], eye(3,3), ord[X(3)], eye(3,3), zero(3), noise));
 | |
| 	GaussianFactorGraph::sharedFactor f3(new JacobianFactor(
 | |
| 	    ord[X(3)], eye(3,3), ord[X(4)], eye(3,3), zero(3), noise));
 | |
| 	GaussianFactorGraph::sharedFactor f4(new JacobianFactor(
 | |
| 	    ord[X(5)], eye(3,3), ord[X(6)], eye(3,3), zero(3), noise));
 | |
| 
 | |
| 	GaussianFactorGraph actual;
 | |
| 	actual.push_back(f1);
 | |
| //	actual.checkGraphConsistency();
 | |
| 	actual.push_back(f2);
 | |
| //	actual.checkGraphConsistency();
 | |
| 	actual.push_back(f3);
 | |
| //	actual.checkGraphConsistency();
 | |
| 	actual.replace(0, f4);
 | |
| //	actual.checkGraphConsistency();
 | |
| 
 | |
| 	GaussianFactorGraph expected;
 | |
| 	expected.push_back(f4);
 | |
| //	actual.checkGraphConsistency();
 | |
| 	expected.push_back(f2);
 | |
| //	actual.checkGraphConsistency();
 | |
| 	expected.push_back(f3);
 | |
| //	actual.checkGraphConsistency();
 | |
| 
 | |
| 	EXPECT(assert_equal(expected, actual));
 | |
| }
 | |
| 
 | |
| ///* ************************************************************************* */
 | |
| //TEST ( GaussianFactorGraph, combine_matrix ) {
 | |
| //	// create a small linear factor graph
 | |
| //	GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| //	Dimensions dimensions = fg.dimensions();
 | |
| //
 | |
| //	// get two factors from it and insert the factors into a vector
 | |
| //	vector<GaussianFactor::shared_ptr> lfg;
 | |
| //	lfg.push_back(fg[4 - 1]);
 | |
| //	lfg.push_back(fg[2 - 1]);
 | |
| //
 | |
| //	// combine in a factor
 | |
| //	Matrix Ab; SharedDiagonal noise;
 | |
| //	Ordering order; order += X(2), L(1), X(1);
 | |
| //	boost::tie(Ab, noise) = combineFactorsAndCreateMatrix(lfg, order, dimensions);
 | |
| //
 | |
| //	// the expected augmented matrix
 | |
| //	Matrix expAb = Matrix_(4, 7,
 | |
| //			-5.,  0., 5., 0.,  0.,  0.,-1.0,
 | |
| //			+0., -5., 0., 5.,  0.,  0., 1.5,
 | |
| //			10.,  0., 0., 0.,-10.,  0., 2.0,
 | |
| //			+0., 10., 0., 0.,  0.,-10.,-1.0);
 | |
| //
 | |
| //	// expected noise model
 | |
| //	SharedDiagonal expModel = noiseModel::Unit::Create(4);
 | |
| //
 | |
| //	EXPECT(assert_equal(expAb, Ab));
 | |
| //	EXPECT(assert_equal(*expModel, *noise));
 | |
| //}
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| /*
 | |
|  *   x2 x1 x3 b
 | |
|  *    1  1    1       1  1  0  1
 | |
|  *    1    1  1  ->      1  1  1
 | |
|  *         1  1             1  1
 | |
|  */
 | |
| // SL-NEEDED? TEST ( GaussianFactorGraph, eliminateFrontals ) {
 | |
| //	typedef GaussianFactorGraph::sharedFactor Factor;
 | |
| //	SharedDiagonal model(Vector_(1, 0.5));
 | |
| //	GaussianFactorGraph fg;
 | |
| //	Factor factor1(new JacobianFactor(X(1), Matrix_(1,1,1.), X(2), Matrix_(1,1,1.), Vector_(1,1.),  model));
 | |
| //	Factor factor2(new JacobianFactor(X(2), Matrix_(1,1,1.), X(3), Matrix_(1,1,1.), Vector_(1,1.),  model));
 | |
| //	Factor factor3(new JacobianFactor(X(3), Matrix_(1,1,1.), X(3), Matrix_(1,1,1.), Vector_(1,1.),  model));
 | |
| //	fg.push_back(factor1);
 | |
| //	fg.push_back(factor2);
 | |
| //	fg.push_back(factor3);
 | |
| //
 | |
| //	Ordering frontals; frontals += X(2), X(1);
 | |
| //	GaussianBayesNet bn = fg.eliminateFrontals(frontals);
 | |
| //
 | |
| //	GaussianBayesNet bn_expected;
 | |
| //	GaussianBayesNet::sharedConditional conditional1(new GaussianConditional(X(2), Vector_(1, 2.), Matrix_(1, 1, 2.),
 | |
| //			X(1), Matrix_(1, 1, 1.), X(3), Matrix_(1, 1, 1.), Vector_(1, 1.)));
 | |
| //	GaussianBayesNet::sharedConditional conditional2(new GaussianConditional(X(1), Vector_(1, 0.), Matrix_(1, 1, -1.),
 | |
| //			X(3), Matrix_(1, 1, 1.), Vector_(1, 1.)));
 | |
| //	bn_expected.push_back(conditional1);
 | |
| //	bn_expected.push_back(conditional2);
 | |
| //	EXPECT(assert_equal(bn_expected, bn));
 | |
| //
 | |
| //	GaussianFactorGraph::sharedFactor factor_expected(new JacobianFactor(X(3), Matrix_(1, 1, 2.), Vector_(1, 2.), SharedDiagonal(Vector_(1, 1.))));
 | |
| //	GaussianFactorGraph fg_expected;
 | |
| //	fg_expected.push_back(factor_expected);
 | |
| //	EXPECT(assert_equal(fg_expected, fg));
 | |
| //}
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(GaussianFactorGraph, createSmoother2)
 | |
| {
 | |
|   using namespace example;
 | |
|   GaussianFactorGraph fg2;
 | |
|   Ordering ordering;
 | |
|   boost::tie(fg2,ordering) = createSmoother(3);
 | |
|   LONGS_EQUAL(5,fg2.size());
 | |
| 
 | |
|   // eliminate
 | |
|   vector<Index> x3var; x3var.push_back(ordering[X(3)]);
 | |
|   vector<Index> x1var; x1var.push_back(ordering[X(1)]);
 | |
|   GaussianBayesNet p_x3 = *GaussianSequentialSolver(
 | |
|       *GaussianSequentialSolver(fg2).jointFactorGraph(x3var)).eliminate();
 | |
|   GaussianBayesNet p_x1 = *GaussianSequentialSolver(
 | |
|       *GaussianSequentialSolver(fg2).jointFactorGraph(x1var)).eliminate();
 | |
|   CHECK(assert_equal(*p_x1.back(),*p_x3.front())); // should be the same because of symmetry
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(GaussianFactorGraph, hasConstraints)
 | |
| {
 | |
| 	FactorGraph<GaussianFactor> fgc1 = createMultiConstraintGraph();
 | |
| 	EXPECT(hasConstraints(fgc1));
 | |
| 
 | |
| 	FactorGraph<GaussianFactor> fgc2 = createSimpleConstraintGraph() ;
 | |
| 	EXPECT(hasConstraints(fgc2));
 | |
| 
 | |
| 	Ordering ordering; ordering += X(1), X(2), L(1);
 | |
| 	FactorGraph<GaussianFactor> fg = createGaussianFactorGraph(ordering);
 | |
| 	EXPECT(!hasConstraints(fg));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
 | |
| /* ************************************************************************* */
 |