177 lines
5.0 KiB
C++
177 lines
5.0 KiB
C++
/**
|
|
* @file SmartRangeFactor.h
|
|
*
|
|
* @brief A smart factor for range-only SLAM that does initialization and marginalization
|
|
*
|
|
* @date Sep 10, 2012
|
|
* @author Alex Cunningham
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <gtsam_unstable/base/dllexport.h>
|
|
#include <gtsam/nonlinear/NonlinearFactor.h>
|
|
#include <gtsam/inference/Key.h>
|
|
#include <gtsam/geometry/Pose2.h>
|
|
#include <gtsam/base/timing.h>
|
|
#include <boost/foreach.hpp>
|
|
#include <map>
|
|
|
|
namespace gtsam {
|
|
|
|
/**
|
|
* Smart factor for range SLAM
|
|
* @addtogroup SLAM
|
|
*/
|
|
class SmartRangeFactor: public NoiseModelFactor {
|
|
protected:
|
|
|
|
struct Circle2 {
|
|
Circle2(const Point2& p, double r) :
|
|
center(p), radius(r) {
|
|
}
|
|
Point2 center;
|
|
double radius;
|
|
};
|
|
|
|
typedef SmartRangeFactor This;
|
|
|
|
std::vector<double> measurements_; ///< Range measurements
|
|
double variance_; ///< variance on noise
|
|
|
|
public:
|
|
|
|
/** Default constructor: don't use directly */
|
|
SmartRangeFactor() {
|
|
}
|
|
|
|
/**
|
|
* Constructor
|
|
* @param s standard deviation of range measurement noise
|
|
*/
|
|
SmartRangeFactor(double s) :
|
|
NoiseModelFactor(noiseModel::Isotropic::Sigma(1, s)), variance_(s * s) {
|
|
}
|
|
|
|
virtual ~SmartRangeFactor() {
|
|
}
|
|
|
|
/// Add a range measurement to a pose with given key.
|
|
void addRange(Key key, double measuredRange) {
|
|
keys_.push_back(key);
|
|
measurements_.push_back(measuredRange);
|
|
size_t n = keys_.size();
|
|
// Since we add the errors, the noise variance adds
|
|
noiseModel_ = noiseModel::Isotropic::Variance(1, n * variance_);
|
|
}
|
|
|
|
// Testable
|
|
|
|
/** print */
|
|
virtual void print(const std::string& s = "",
|
|
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
|
|
std::cout << s << "SmartRangeFactor with " << size() << " measurements\n";
|
|
NoiseModelFactor::print(s);
|
|
}
|
|
|
|
/** Check if two factors are equal */
|
|
virtual bool equals(const NonlinearFactor& f, double tol = 1e-9) const {
|
|
return false;
|
|
}
|
|
|
|
// factor interface
|
|
|
|
/**
|
|
* Triangulate a point from at least three pose-range pairs
|
|
* Checks for best pair that includes first point
|
|
*/
|
|
Point2 triangulate(const Values& x) const {
|
|
//gttic_(triangulate);
|
|
// create n circles corresponding to measured range around each pose
|
|
std::list<Circle2> circles;
|
|
size_t n = size();
|
|
for (size_t j = 0; j < n; j++) {
|
|
const Pose2& pose = x.at<Pose2>(keys_[j]);
|
|
circles.push_back(Circle2(pose.translation(), measurements_[j]));
|
|
}
|
|
|
|
Circle2 circle1 = circles.front();
|
|
boost::optional<Point2> best_fh;
|
|
boost::optional<Circle2> best_circle;
|
|
|
|
// loop over all circles
|
|
BOOST_FOREACH(const Circle2& it, circles) {
|
|
// distance between circle centers.
|
|
double d = circle1.center.dist(it.center);
|
|
if (d < 1e-9)
|
|
continue; // skip circles that are in the same location
|
|
// Find f and h, the intersection points in normalized circles
|
|
boost::optional<Point2> fh = Point2::CircleCircleIntersection(
|
|
circle1.radius / d, it.radius / d);
|
|
// Check if this pair is better by checking h = fh->y()
|
|
// if h is large, the intersections are well defined.
|
|
if (fh && (!best_fh || fh->y() > best_fh->y())) {
|
|
best_fh = fh;
|
|
best_circle = it;
|
|
}
|
|
}
|
|
|
|
// use best fh to find actual intersection points
|
|
std::list<Point2> intersections = Point2::CircleCircleIntersection(
|
|
circle1.center, best_circle->center, best_fh);
|
|
|
|
// pick winner based on other measurements
|
|
double error1 = 0, error2 = 0;
|
|
Point2 p1 = intersections.front(), p2 = intersections.back();
|
|
BOOST_FOREACH(const Circle2& it, circles) {
|
|
error1 += it.center.dist(p1);
|
|
error2 += it.center.dist(p2);
|
|
}
|
|
return (error1 < error2) ? p1 : p2;
|
|
//gttoc_(triangulate);
|
|
}
|
|
|
|
/**
|
|
* Error function *without* the NoiseModel, \f$ z-h(x) \f$.
|
|
*/
|
|
virtual Vector unwhitenedError(const Values& x,
|
|
boost::optional<std::vector<Matrix>&> H = boost::none) const {
|
|
size_t n = size();
|
|
if (n < 3) {
|
|
if (H)
|
|
// set Jacobians to zero for n<3
|
|
for (size_t j = 0; j < n; j++)
|
|
(*H)[j] = Matrix::Zero(3, 1);
|
|
return zero(1);
|
|
} else {
|
|
Vector error = zero(1);
|
|
|
|
// triangulate to get the optimized point
|
|
// TODO: Should we have a (better?) variant that does this in relative coordinates ?
|
|
Point2 optimizedPoint = triangulate(x);
|
|
|
|
// TODO: triangulation should be followed by an optimization given poses
|
|
// now evaluate the errors between predicted and measured range
|
|
for (size_t j = 0; j < n; j++) {
|
|
const Pose2& pose = x.at<Pose2>(keys_[j]);
|
|
if (H)
|
|
// also calculate 1*3 derivative for each of the n poses
|
|
error[0] += pose.range(optimizedPoint, (*H)[j]) - measurements_[j];
|
|
else
|
|
error[0] += pose.range(optimizedPoint) - measurements_[j];
|
|
}
|
|
return error;
|
|
}
|
|
}
|
|
|
|
/// @return a deep copy of this factor
|
|
virtual gtsam::NonlinearFactor::shared_ptr clone() const {
|
|
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
|
|
gtsam::NonlinearFactor::shared_ptr(new This(*this)));
|
|
}
|
|
|
|
};
|
|
|
|
} // \namespace gtsam
|
|
|