gtsam/gtsam_unstable/slam/InertialNavFactor_GlobalVel...

403 lines
18 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file InertialNavFactor_GlobalVelocity.h
* @author Vadim Indelman, Stephen Williams
* @brief Inertial navigation factor (velocity in the global frame)
* @date Sept 13, 2012
**/
#pragma once
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <gtsam/linear/NoiseModel.h>
#include <gtsam/geometry/Rot3.h>
#include <gtsam/base/Matrix.h>
// Using numerical derivative to calculate d(Pose3::Expmap)/dw
#include <gtsam/base/numericalDerivative.h>
#include <boost/optional.hpp>
#include <ostream>
namespace gtsam {
/*
* NOTES:
* =====
* - The global frame (NED or ENU) is defined by the user by specifying the gravity vector in this frame.
* - The IMU frame is implicitly defined by the user via the rotation matrix between global and imu frames.
* - Camera and IMU frames are identical
* - The user should specify a continuous equivalent noise covariance, which can be calculated using
* the static function CalcEquivalentNoiseCov based on the IMU gyro and acc measurement noise covariance
* matrices and the process\modeling covariance matrix. The IneritalNavFactor converts this into a
* discrete form using the supplied delta_t between sub-sequential measurements.
* - Earth-rate correction:
* + Currently the user should supply R_ECEF_to_G, which is the rotation from ECEF to the global
* frame (Local-Level system: ENU or NED, see above).
* + R_ECEF_to_G can be calculated by approximated values of latitude and longitude of the system.
* + Currently it is assumed that a relatively small distance is traveled w.r.t. to initial pose, since R_ECEF_to_G is constant.
* Otherwise, R_ECEF_to_G should be updated each time using the current lat-lon.
*
* - Frame Notation:
* Quantities are written as {Frame of Representation/Destination Frame}_{Quantity Type}_{Quatity Description/Origination Frame}
* So, the rotational velocity of the sensor written in the body frame is: body_omega_sensor
* And the transformation from the body frame to the world frame would be: world_P_body
* This allows visual chaining. For example, converting the sensed angular velocity of the IMU
* (angular velocity of the sensor in the sensor frame) into the world frame can be performed as:
* world_R_body * body_R_sensor * sensor_omega_sensor = world_omega_sensor
*
*
* - Common Quantity Types
* P : pose/3d transformation
* R : rotation
* omega : angular velocity
* t : translation
* v : velocity
* a : acceleration
*
* - Common Frames
* sensor : the coordinate system attached to the sensor origin
* body : the coordinate system attached to body/inertial frame.
* Unless an optional frame transformation is provided, the
* sensor frame and the body frame will be identical
* world : the global/world coordinate frame. This is assumed to be
* a tangent plane to the earth's surface somewhere near the
* vehicle
*/
template<class POSE, class VELOCITY, class IMUBIAS>
class InertialNavFactor_GlobalVelocity : public NoiseModelFactor5<POSE, VELOCITY, IMUBIAS, POSE, VELOCITY> {
private:
typedef InertialNavFactor_GlobalVelocity<POSE, VELOCITY, IMUBIAS> This;
typedef NoiseModelFactor5<POSE, VELOCITY, IMUBIAS, POSE, VELOCITY> Base;
Vector measurement_acc_;
Vector measurement_gyro_;
double dt_;
Vector world_g_;
Vector world_rho_;
Vector world_omega_earth_;
boost::optional<POSE> body_P_sensor_; // The pose of the sensor in the body frame
public:
// shorthand for a smart pointer to a factor
typedef typename boost::shared_ptr<InertialNavFactor_GlobalVelocity> shared_ptr;
/** default constructor - only use for serialization */
InertialNavFactor_GlobalVelocity() {}
/** Constructor */
InertialNavFactor_GlobalVelocity(const Key& Pose1, const Key& Vel1, const Key& IMUBias1, const Key& Pose2, const Key& Vel2,
const Vector& measurement_acc, const Vector& measurement_gyro, const double measurement_dt, const Vector world_g, const Vector world_rho,
const Vector& world_omega_earth, const noiseModel::Gaussian::shared_ptr& model_continuous, boost::optional<POSE> body_P_sensor = boost::none) :
Base(calc_descrete_noise_model(model_continuous, measurement_dt ),
Pose1, Vel1, IMUBias1, Pose2, Vel2), measurement_acc_(measurement_acc), measurement_gyro_(measurement_gyro),
dt_(measurement_dt), world_g_(world_g), world_rho_(world_rho), world_omega_earth_(world_omega_earth), body_P_sensor_(body_P_sensor) { }
virtual ~InertialNavFactor_GlobalVelocity() {}
/** implement functions needed for Testable */
/** print */
virtual void print(const std::string& s = "InertialNavFactor_GlobalVelocity", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
std::cout << s << "("
<< keyFormatter(this->key1()) << ","
<< keyFormatter(this->key2()) << ","
<< keyFormatter(this->key3()) << ","
<< keyFormatter(this->key4()) << ","
<< keyFormatter(this->key5()) << "\n";
std::cout << "acc measurement: " << this->measurement_acc_.transpose() << std::endl;
std::cout << "gyro measurement: " << this->measurement_gyro_.transpose() << std::endl;
std::cout << "dt: " << this->dt_ << std::endl;
std::cout << "gravity (in world frame): " << this->world_g_.transpose() << std::endl;
std::cout << "craft rate (in world frame): " << this->world_rho_.transpose() << std::endl;
std::cout << "earth's rotation (in world frame): " << this->world_omega_earth_.transpose() << std::endl;
if(this->body_P_sensor_)
this->body_P_sensor_->print(" sensor pose in body frame: ");
this->noiseModel_->print(" noise model");
}
/** equals */
virtual bool equals(const NonlinearFactor& expected, double tol=1e-9) const {
const This *e = dynamic_cast<const This*> (&expected);
return e != NULL && Base::equals(*e, tol)
&& (measurement_acc_ - e->measurement_acc_).norm() < tol
&& (measurement_gyro_ - e->measurement_gyro_).norm() < tol
&& (dt_ - e->dt_) < tol
&& (world_g_ - e->world_g_).norm() < tol
&& (world_rho_ - e->world_rho_).norm() < tol
&& (world_omega_earth_ - e->world_omega_earth_).norm() < tol
&& ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_)));
}
POSE predictPose(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1) const {
// Calculate the corrected measurements using the Bias object
Vector GyroCorrected(Bias1.correctGyroscope(measurement_gyro_));
const POSE& world_P1_body = Pose1;
const VELOCITY& world_V1_body = Vel1;
// Calculate the acceleration and angular velocity of the body in the body frame (including earth-related rotations)
Vector body_omega_body;
if(body_P_sensor_) {
body_omega_body = body_P_sensor_->rotation().matrix() * GyroCorrected;
} else {
body_omega_body = GyroCorrected;
}
// Convert earth-related terms into the body frame
Matrix body_R_world(world_P1_body.rotation().inverse().matrix());
Vector body_rho = body_R_world * world_rho_;
Vector body_omega_earth = body_R_world * world_omega_earth_;
// Correct for earth-related terms
body_omega_body -= body_rho + body_omega_earth;
// The velocity is in the global frame, so composing Pose1 with v*dt is incorrect
return POSE(Pose1.rotation() * POSE::Rotation::Expmap(body_omega_body*dt_), Pose1.translation() + typename POSE::Translation(world_V1_body*dt_));
}
VELOCITY predictVelocity(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1) const {
// Calculate the corrected measurements using the Bias object
Vector AccCorrected(Bias1.correctAccelerometer(measurement_acc_));
const POSE& world_P1_body = Pose1;
const VELOCITY& world_V1_body = Vel1;
// Calculate the acceleration and angular velocity of the body in the body frame (including earth-related rotations)
Vector body_a_body, body_omega_body;
if(body_P_sensor_) {
Matrix body_R_sensor = body_P_sensor_->rotation().matrix();
Vector GyroCorrected(Bias1.correctGyroscope(measurement_gyro_));
body_omega_body = body_R_sensor * GyroCorrected;
Matrix body_omega_body__cross = skewSymmetric(body_omega_body);
body_a_body = body_R_sensor * AccCorrected - body_omega_body__cross * body_omega_body__cross * body_P_sensor_->translation();
} else {
body_a_body = AccCorrected;
}
// Correct for earth-related terms
Vector world_a_body = world_P1_body.rotation().matrix() * body_a_body + world_g_ - 2*skewSymmetric(world_rho_ + world_omega_earth_)*world_V1_body;
// Calculate delta in the body frame
VELOCITY VelDelta(world_a_body*dt_);
// Predict
return Vel1 + VelDelta;
}
void predict(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1, POSE& Pose2, VELOCITY& Vel2) const {
Pose2 = predictPose(Pose1, Vel1, Bias1);
Vel2 = predictVelocity(Pose1, Vel1, Bias1);
}
POSE evaluatePoseError(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1, const POSE& Pose2, const VELOCITY& Vel2) const {
// Predict
POSE Pose2Pred = predictPose(Pose1, Vel1, Bias1);
// Calculate error
return Pose2.between(Pose2Pred);
}
VELOCITY evaluateVelocityError(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1, const POSE& Pose2, const VELOCITY& Vel2) const {
// Predict
VELOCITY Vel2Pred = predictVelocity(Pose1, Vel1, Bias1);
// Calculate error
return Vel2Pred - Vel2;
}
/** implement functions needed to derive from Factor */
Vector evaluateError(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1, const POSE& Pose2, const VELOCITY& Vel2,
boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none,
boost::optional<Matrix&> H3 = boost::none,
boost::optional<Matrix&> H4 = boost::none,
boost::optional<Matrix&> H5 = boost::none) const {
// TODO: Write analytical derivative calculations
// Jacobian w.r.t. Pose1
if (H1){
Matrix H1_Pose = gtsam::numericalDerivative11<POSE, POSE>(boost::bind(&InertialNavFactor_GlobalVelocity::evaluatePoseError, this, _1, Vel1, Bias1, Pose2, Vel2), Pose1);
Matrix H1_Vel = gtsam::numericalDerivative11<VELOCITY, POSE>(boost::bind(&InertialNavFactor_GlobalVelocity::evaluateVelocityError, this, _1, Vel1, Bias1, Pose2, Vel2), Pose1);
*H1 = stack(2, &H1_Pose, &H1_Vel);
}
// Jacobian w.r.t. Vel1
if (H2){
if (Vel1.size()!=3) throw std::runtime_error("Frank's hack to make this compile will not work if size != 3");
Matrix H2_Pose = gtsam::numericalDerivative11<POSE, Vector3>(boost::bind(&InertialNavFactor_GlobalVelocity::evaluatePoseError, this, Pose1, _1, Bias1, Pose2, Vel2), Vel1);
Matrix H2_Vel = gtsam::numericalDerivative11<Vector3, Vector3>(boost::bind(&InertialNavFactor_GlobalVelocity::evaluateVelocityError, this, Pose1, _1, Bias1, Pose2, Vel2), Vel1);
*H2 = stack(2, &H2_Pose, &H2_Vel);
}
// Jacobian w.r.t. IMUBias1
if (H3){
Matrix H3_Pose = gtsam::numericalDerivative11<POSE, IMUBIAS>(boost::bind(&InertialNavFactor_GlobalVelocity::evaluatePoseError, this, Pose1, Vel1, _1, Pose2, Vel2), Bias1);
Matrix H3_Vel = gtsam::numericalDerivative11<VELOCITY, IMUBIAS>(boost::bind(&InertialNavFactor_GlobalVelocity::evaluateVelocityError, this, Pose1, Vel1, _1, Pose2, Vel2), Bias1);
*H3 = stack(2, &H3_Pose, &H3_Vel);
}
// Jacobian w.r.t. Pose2
if (H4){
Matrix H4_Pose = gtsam::numericalDerivative11<POSE, POSE>(boost::bind(&InertialNavFactor_GlobalVelocity::evaluatePoseError, this, Pose1, Vel1, Bias1, _1, Vel2), Pose2);
Matrix H4_Vel = gtsam::numericalDerivative11<VELOCITY, POSE>(boost::bind(&InertialNavFactor_GlobalVelocity::evaluateVelocityError, this, Pose1, Vel1, Bias1, _1, Vel2), Pose2);
*H4 = stack(2, &H4_Pose, &H4_Vel);
}
// Jacobian w.r.t. Vel2
if (H5){
if (Vel2.size()!=3) throw std::runtime_error("Frank's hack to make this compile will not work if size != 3");
Matrix H5_Pose = gtsam::numericalDerivative11<POSE, Vector3>(boost::bind(&InertialNavFactor_GlobalVelocity::evaluatePoseError, this, Pose1, Vel1, Bias1, Pose2, _1), Vel2);
Matrix H5_Vel = gtsam::numericalDerivative11<Vector3, Vector3>(boost::bind(&InertialNavFactor_GlobalVelocity::evaluateVelocityError, this, Pose1, Vel1, Bias1, Pose2, _1), Vel2);
*H5 = stack(2, &H5_Pose, &H5_Vel);
}
Vector ErrPoseVector(POSE::Logmap(evaluatePoseError(Pose1, Vel1, Bias1, Pose2, Vel2)));
Vector ErrVelVector(evaluateVelocityError(Pose1, Vel1, Bias1, Pose2, Vel2));
return concatVectors(2, &ErrPoseVector, &ErrVelVector);
}
static inline noiseModel::Gaussian::shared_ptr CalcEquivalentNoiseCov(const noiseModel::Gaussian::shared_ptr& gaussian_acc, const noiseModel::Gaussian::shared_ptr& gaussian_gyro,
const noiseModel::Gaussian::shared_ptr& gaussian_process){
Matrix cov_acc = ( gaussian_acc->R().transpose() * gaussian_acc->R() ).inverse();
Matrix cov_gyro = ( gaussian_gyro->R().transpose() * gaussian_gyro->R() ).inverse();
Matrix cov_process = ( gaussian_process->R().transpose() * gaussian_process->R() ).inverse();
cov_process.block(0,0, 3,3) += cov_gyro;
cov_process.block(6,6, 3,3) += cov_acc;
return noiseModel::Gaussian::Covariance(cov_process);
}
static inline void Calc_g_rho_omega_earth_NED(const Vector& Pos_NED, const Vector& Vel_NED, const Vector& LatLonHeight_IC, const Vector& Pos_NED_Initial,
Vector& g_NED, Vector& rho_NED, Vector& omega_earth_NED) {
Matrix ENU_to_NED = (Matrix(3, 3) <<
0.0, 1.0, 0.0,
1.0, 0.0, 0.0,
0.0, 0.0, -1.0).finished();
Matrix NED_to_ENU = (Matrix(3, 3) <<
0.0, 1.0, 0.0,
1.0, 0.0, 0.0,
0.0, 0.0, -1.0).finished();
// Convert incoming parameters to ENU
Vector Pos_ENU = NED_to_ENU * Pos_NED;
Vector Vel_ENU = NED_to_ENU * Vel_NED;
Vector Pos_ENU_Initial = NED_to_ENU * Pos_NED_Initial;
// Call ENU version
Vector g_ENU;
Vector rho_ENU;
Vector omega_earth_ENU;
Calc_g_rho_omega_earth_ENU(Pos_ENU, Vel_ENU, LatLonHeight_IC, Pos_ENU_Initial, g_ENU, rho_ENU, omega_earth_ENU);
// Convert output to NED
g_NED = ENU_to_NED * g_ENU;
rho_NED = ENU_to_NED * rho_ENU;
omega_earth_NED = ENU_to_NED * omega_earth_ENU;
}
static inline void Calc_g_rho_omega_earth_ENU(const Vector& Pos_ENU, const Vector& Vel_ENU, const Vector& LatLonHeight_IC, const Vector& Pos_ENU_Initial,
Vector& g_ENU, Vector& rho_ENU, Vector& omega_earth_ENU){
double R0 = 6.378388e6;
double e = 1/297;
double Re( R0*( 1-e*(sin( LatLonHeight_IC(0) ))*(sin( LatLonHeight_IC(0) )) ) );
// Calculate current lat, lon
Vector delta_Pos_ENU(Pos_ENU - Pos_ENU_Initial);
double delta_lat(delta_Pos_ENU(1)/Re);
double delta_lon(delta_Pos_ENU(0)/(Re*cos(LatLonHeight_IC(0))));
double lat_new(LatLonHeight_IC(0) + delta_lat);
double lon_new(LatLonHeight_IC(1) + delta_lon);
// Rotation of lon about z axis
Rot3 C1(cos(lon_new), sin(lon_new), 0.0,
-sin(lon_new), cos(lon_new), 0.0,
0.0, 0.0, 1.0);
// Rotation of lat about y axis
Rot3 C2(cos(lat_new), 0.0, sin(lat_new),
0.0, 1.0, 0.0,
-sin(lat_new), 0.0, cos(lat_new));
Rot3 UEN_to_ENU(0, 1, 0,
0, 0, 1,
1, 0, 0);
Rot3 R_ECEF_to_ENU( UEN_to_ENU * C2 * C1 );
Vector omega_earth_ECEF(Vector3(0.0, 0.0, 7.292115e-5));
omega_earth_ENU = R_ECEF_to_ENU.matrix() * omega_earth_ECEF;
// Calculating g
double height(LatLonHeight_IC(2));
double EQUA_RADIUS = 6378137.0; // equatorial radius of the earth; WGS-84
double ECCENTRICITY = 0.0818191908426; // eccentricity of the earth ellipsoid
double e2( pow(ECCENTRICITY,2) );
double den( 1-e2*pow(sin(lat_new),2) );
double Rm( (EQUA_RADIUS*(1-e2))/( pow(den,(3/2)) ) );
double Rp( EQUA_RADIUS/( sqrt(den) ) );
double Ro( sqrt(Rp*Rm) ); // mean earth radius of curvature
double g0( 9.780318*( 1 + 5.3024e-3 * pow(sin(lat_new),2) - 5.9e-6 * pow(sin(2*lat_new),2) ) );
double g_calc( g0/( pow(1 + height/Ro, 2) ) );
g_ENU = (Vector(3) << 0.0, 0.0, -g_calc).finished();
// Calculate rho
double Ve( Vel_ENU(0) );
double Vn( Vel_ENU(1) );
double rho_E = -Vn/(Rm + height);
double rho_N = Ve/(Rp + height);
double rho_U = Ve*tan(lat_new)/(Rp + height);
rho_ENU = (Vector(3) << rho_E, rho_N, rho_U).finished();
}
static inline noiseModel::Gaussian::shared_ptr calc_descrete_noise_model(const noiseModel::Gaussian::shared_ptr& model, double delta_t){
/* Q_d (approx)= Q * delta_t */
/* In practice, square root of the information matrix is represented, so that:
* R_d (approx)= R / sqrt(delta_t)
* */
return noiseModel::Gaussian::SqrtInformation(model->R()/std::sqrt(delta_t));
}
private:
/** Serialization function */
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
ar & boost::serialization::make_nvp("NonlinearFactor2",
boost::serialization::base_object<Base>(*this));
}
}; // \class InertialNavFactor_GlobalVelocity
/// traits
template<class POSE, class VELOCITY, class IMUBIAS>
struct traits<InertialNavFactor_GlobalVelocity<POSE, VELOCITY, IMUBIAS> > :
public Testable<InertialNavFactor_GlobalVelocity<POSE, VELOCITY, IMUBIAS> > {
};
} /// namespace aspn