238 lines
8.4 KiB
C++
238 lines
8.4 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file testLinearEquality.cpp
|
|
* @brief Unit tests for LinearEquality
|
|
* @author thduynguyen
|
|
**/
|
|
|
|
#include <gtsam_unstable/linear/LinearEquality.h>
|
|
#include <gtsam/base/TestableAssertions.h>
|
|
#include <gtsam/linear/HessianFactor.h>
|
|
#include <gtsam/linear/VectorValues.h>
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
#include <boost/assign/std/vector.hpp>
|
|
#include <boost/assign/list_of.hpp>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
using namespace boost::assign;
|
|
|
|
GTSAM_CONCEPT_TESTABLE_INST(LinearEquality)
|
|
|
|
namespace {
|
|
namespace simple {
|
|
// Terms we'll use
|
|
const vector<pair<Key, Matrix> > terms = list_of<pair<Key,Matrix> >
|
|
(make_pair(5, Matrix3::Identity()))
|
|
(make_pair(10, 2*Matrix3::Identity()))
|
|
(make_pair(15, 3*Matrix3::Identity()));
|
|
|
|
// RHS and sigmas
|
|
const Vector b = (Vector(3) << 1., 2., 3.).finished();
|
|
const SharedDiagonal noise = noiseModel::Constrained::All(3);
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(LinearEquality, constructors_and_accessors)
|
|
{
|
|
using namespace simple;
|
|
|
|
// Test for using different numbers of terms
|
|
{
|
|
// One term constructor
|
|
LinearEquality expected(
|
|
boost::make_iterator_range(terms.begin(), terms.begin() + 1), b, 0);
|
|
LinearEquality actual(terms[0].first, terms[0].second, b, 0);
|
|
EXPECT(assert_equal(expected, actual));
|
|
LONGS_EQUAL((long)terms[0].first, (long)actual.keys().back());
|
|
EXPECT(assert_equal(terms[0].second, actual.getA(actual.end() - 1)));
|
|
EXPECT(assert_equal(b, expected.getb()));
|
|
EXPECT(assert_equal(b, actual.getb()));
|
|
EXPECT(assert_equal(*noise, *actual.get_model()));
|
|
}
|
|
{
|
|
// Two term constructor
|
|
LinearEquality expected(
|
|
boost::make_iterator_range(terms.begin(), terms.begin() + 2), b, 0);
|
|
LinearEquality actual(terms[0].first, terms[0].second,
|
|
terms[1].first, terms[1].second, b, 0);
|
|
EXPECT(assert_equal(expected, actual));
|
|
LONGS_EQUAL((long)terms[1].first, (long)actual.keys().back());
|
|
EXPECT(assert_equal(terms[1].second, actual.getA(actual.end() - 1)));
|
|
EXPECT(assert_equal(b, expected.getb()));
|
|
EXPECT(assert_equal(b, actual.getb()));
|
|
EXPECT(assert_equal(*noise, *actual.get_model()));
|
|
}
|
|
{
|
|
// Three term constructor
|
|
LinearEquality expected(
|
|
boost::make_iterator_range(terms.begin(), terms.begin() + 3), b, 0);
|
|
LinearEquality actual(terms[0].first, terms[0].second,
|
|
terms[1].first, terms[1].second, terms[2].first, terms[2].second, b, 0);
|
|
EXPECT(assert_equal(expected, actual));
|
|
LONGS_EQUAL((long)terms[2].first, (long)actual.keys().back());
|
|
EXPECT(assert_equal(terms[2].second, actual.getA(actual.end() - 1)));
|
|
EXPECT(assert_equal(b, expected.getb()));
|
|
EXPECT(assert_equal(b, actual.getb()));
|
|
EXPECT(assert_equal(*noise, *actual.get_model()));
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(LinearEquality, Hessian_conversion) {
|
|
HessianFactor hessian(0, (Matrix(4,4) <<
|
|
1.57, 2.695, -1.1, -2.35,
|
|
2.695, 11.3125, -0.65, -10.225,
|
|
-1.1, -0.65, 1, 0.5,
|
|
-2.35, -10.225, 0.5, 9.25).finished(),
|
|
(Vector(4) << -7.885, -28.5175, 2.75, 25.675).finished(),
|
|
73.1725);
|
|
|
|
try {
|
|
LinearEquality actual(hessian);
|
|
EXPECT(false);
|
|
}
|
|
catch (const std::runtime_error& exception) {
|
|
EXPECT(true);
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(LinearEquality, error)
|
|
{
|
|
LinearEquality factor(simple::terms, simple::b, 0);
|
|
|
|
VectorValues values;
|
|
values.insert(5, Vector::Constant(3, 1.0));
|
|
values.insert(10, Vector::Constant(3, 0.5));
|
|
values.insert(15, Vector::Constant(3, 1.0/3.0));
|
|
|
|
Vector expected_unwhitened(3); expected_unwhitened << 2.0, 1.0, 0.0;
|
|
Vector actual_unwhitened = factor.unweighted_error(values);
|
|
EXPECT(assert_equal(expected_unwhitened, actual_unwhitened));
|
|
|
|
// whitened is meaningless in constraints
|
|
Vector expected_whitened(3); expected_whitened = expected_unwhitened;
|
|
Vector actual_whitened = factor.error_vector(values);
|
|
EXPECT(assert_equal(expected_whitened, actual_whitened));
|
|
|
|
double expected_error = 0.0;
|
|
double actual_error = factor.error(values);
|
|
DOUBLES_EQUAL(expected_error, actual_error, 1e-10);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(LinearEquality, matrices_NULL)
|
|
{
|
|
// Make sure everything works with NULL noise model
|
|
LinearEquality factor(simple::terms, simple::b, 0);
|
|
|
|
Matrix AExpected(3, 9);
|
|
AExpected << simple::terms[0].second, simple::terms[1].second, simple::terms[2].second;
|
|
Vector rhsExpected = simple::b;
|
|
Matrix augmentedJacobianExpected(3, 10);
|
|
augmentedJacobianExpected << AExpected, rhsExpected;
|
|
|
|
// Whitened Jacobian
|
|
EXPECT(assert_equal(AExpected, factor.jacobian().first));
|
|
EXPECT(assert_equal(rhsExpected, factor.jacobian().second));
|
|
EXPECT(assert_equal(augmentedJacobianExpected, factor.augmentedJacobian()));
|
|
|
|
// Unwhitened Jacobian
|
|
EXPECT(assert_equal(AExpected, factor.jacobianUnweighted().first));
|
|
EXPECT(assert_equal(rhsExpected, factor.jacobianUnweighted().second));
|
|
EXPECT(assert_equal(augmentedJacobianExpected, factor.augmentedJacobianUnweighted()));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(LinearEquality, matrices)
|
|
{
|
|
// And now witgh a non-unit noise model
|
|
LinearEquality factor(simple::terms, simple::b, 0);
|
|
|
|
Matrix jacobianExpected(3, 9);
|
|
jacobianExpected << simple::terms[0].second, simple::terms[1].second, simple::terms[2].second;
|
|
Vector rhsExpected = simple::b;
|
|
Matrix augmentedJacobianExpected(3, 10);
|
|
augmentedJacobianExpected << jacobianExpected, rhsExpected;
|
|
|
|
Matrix augmentedHessianExpected =
|
|
augmentedJacobianExpected.transpose() * simple::noise->R().transpose()
|
|
* simple::noise->R() * augmentedJacobianExpected;
|
|
|
|
// Whitened Jacobian
|
|
EXPECT(assert_equal(jacobianExpected, factor.jacobian().first));
|
|
EXPECT(assert_equal(rhsExpected, factor.jacobian().second));
|
|
EXPECT(assert_equal(augmentedJacobianExpected, factor.augmentedJacobian()));
|
|
|
|
// Unwhitened Jacobian
|
|
EXPECT(assert_equal(jacobianExpected, factor.jacobianUnweighted().first));
|
|
EXPECT(assert_equal(rhsExpected, factor.jacobianUnweighted().second));
|
|
EXPECT(assert_equal(augmentedJacobianExpected, factor.augmentedJacobianUnweighted()));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(LinearEquality, operators )
|
|
{
|
|
Matrix I = I_2x2;
|
|
Vector b = (Vector(2) << 0.2,-0.1).finished();
|
|
LinearEquality lf(1, -I, 2, I, b, 0);
|
|
|
|
VectorValues c;
|
|
c.insert(1, (Vector(2) << 10.,20.).finished());
|
|
c.insert(2, (Vector(2) << 30.,60.).finished());
|
|
|
|
// test A*x
|
|
Vector expectedE = (Vector(2) << 20.,40.).finished();
|
|
Vector actualE = lf * c;
|
|
EXPECT(assert_equal(expectedE, actualE));
|
|
|
|
// test A^e
|
|
VectorValues expectedX;
|
|
expectedX.insert(1, (Vector(2) << -20.,-40.).finished());
|
|
expectedX.insert(2, (Vector(2) << 20., 40.).finished());
|
|
VectorValues actualX = VectorValues::Zero(expectedX);
|
|
lf.transposeMultiplyAdd(1.0, actualE, actualX);
|
|
EXPECT(assert_equal(expectedX, actualX));
|
|
|
|
// test gradient at zero
|
|
Matrix A; Vector b2; boost::tie(A,b2) = lf.jacobian();
|
|
VectorValues expectedG;
|
|
expectedG.insert(1, (Vector(2) << 0.2, -0.1).finished());
|
|
expectedG.insert(2, (Vector(2) << -0.2, 0.1).finished());
|
|
VectorValues actualG = lf.gradientAtZero();
|
|
EXPECT(assert_equal(expectedG, actualG));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(LinearEquality, default_error )
|
|
{
|
|
LinearEquality f;
|
|
double actual = f.error(VectorValues());
|
|
DOUBLES_EQUAL(0.0, actual, 1e-15);
|
|
}
|
|
|
|
//* ************************************************************************* */
|
|
TEST(LinearEquality, empty )
|
|
{
|
|
// create an empty factor
|
|
LinearEquality f;
|
|
EXPECT(f.empty());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
|
|
/* ************************************************************************* */
|