140 lines
5.7 KiB
C++
140 lines
5.7 KiB
C++
/**
|
|
* @file testPendulumExplicitEuler.cpp
|
|
* @author Duy-Nguyen Ta
|
|
*/
|
|
|
|
#include <CppUnitLite/TestHarness.h>
|
|
#include <gtsam/base/numericalDerivative.h>
|
|
#include <gtsam/inference/Symbol.h>
|
|
#include <gtsam_unstable/dynamics/SimpleHelicopter.h>
|
|
|
|
/* ************************************************************************* */
|
|
using namespace gtsam;
|
|
using namespace gtsam::symbol_shorthand;
|
|
|
|
const double tol=1e-5;
|
|
const double h = 0.01;
|
|
|
|
//const double deg2rad = M_PI/180.0;
|
|
//Pose3 g1(Rot3::Ypr(deg2rad*10.0, deg2rad*20.0, deg2rad*30.0), Point3(100.0, 200.0, 300.0));
|
|
Pose3 g1(Rot3(), Point3(100.0, 0.0, 300.0));
|
|
//Vector6 v1((Vector(6) << 0.1, 0.05, 0.02, 10.0, 20.0, 30.0).finished());
|
|
Vector6 V1_w((Vector(6) << 0.0, 0.0, M_PI/3, 0.0, 0.0, 30.0).finished());
|
|
Vector6 V1_g1 = g1.inverse().Adjoint(V1_w);
|
|
Pose3 g2(g1.expmap(h*V1_g1));
|
|
//Vector6 v2 = Pose3::Logmap(g1.between(g2));
|
|
|
|
double mass = 100.0;
|
|
Vector gamma2 = Vector2(0.0, 0.0); // no shape
|
|
Vector u2 = Vector2(0.0, 0.0); // no control at time 2
|
|
double distT = 1.0; // distance from the body-centered x axis to the big top motor
|
|
double distR = 5.0; // distance from the body-centered z axis to the small motor
|
|
Matrix Mass = ((Vector(3) << mass, mass, mass).finished()).asDiagonal();
|
|
Matrix Inertia = (Vector(6) << 2.0/5.0*mass*distR*distR, 2.0/5.0*mass*distR*distR, 2.0/5.0*mass*distR*distR, mass, mass, mass).finished().asDiagonal();
|
|
|
|
Vector computeFu(const Vector& gamma, const Vector& control) {
|
|
double gamma_r = gamma(0), gamma_p = gamma(1);
|
|
|
|
Matrix F = (Matrix(6, 2) << distT*sin(gamma_r), 0.0,
|
|
distT*sin(gamma_p*cos(gamma_r)), 0.0,
|
|
0.0, distR,
|
|
sin(gamma_p)*cos(gamma_r), 0.0,
|
|
-sin(gamma_r), -1.0,
|
|
cos(gamma_p)*sin(gamma_r), 0.0
|
|
).finished();
|
|
return F*control;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Reconstruction, evaluateError) {
|
|
// hard constraints don't need a noise model
|
|
Reconstruction constraint(G(2), G(1), V(1), h);
|
|
|
|
// verify error function
|
|
Matrix H1, H2, H3;
|
|
EXPECT(
|
|
assert_equal(zero(6), constraint.evaluateError(g2, g1, V1_g1, H1, H2, H3), tol));
|
|
|
|
Matrix numericalH1 = numericalDerivative31(
|
|
boost::function<Vector(const Pose3&, const Pose3&, const Vector6&)>(
|
|
boost::bind(&Reconstruction::evaluateError, constraint, _1, _2, _3,
|
|
boost::none, boost::none, boost::none)), g2, g1, V1_g1, 1e-5);
|
|
|
|
Matrix numericalH2 = numericalDerivative32(
|
|
boost::function<Vector(const Pose3&, const Pose3&, const Vector6&)>(
|
|
boost::bind(&Reconstruction::evaluateError, constraint, _1, _2, _3,
|
|
boost::none, boost::none, boost::none)), g2, g1, V1_g1, 1e-5);
|
|
|
|
Matrix numericalH3 = numericalDerivative33(
|
|
boost::function<Vector(const Pose3&, const Pose3&, const Vector6&)>(
|
|
boost::bind(&Reconstruction::evaluateError, constraint, _1, _2, _3,
|
|
boost::none, boost::none, boost::none)), g2, g1, V1_g1, 1e-5);
|
|
|
|
EXPECT(assert_equal(numericalH1,H1,1e-5));
|
|
EXPECT(assert_equal(numericalH2,H2,1e-5));
|
|
#ifdef GTSAM_USE_QUATERNIONS // TODO: why is the quaternion version much less accurate??
|
|
EXPECT(assert_equal(numericalH3,H3,1e-3));
|
|
#else
|
|
EXPECT(assert_equal(numericalH3,H3,1e-3));
|
|
#endif
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Implement Newton-Euler equation for rigid body dynamics
|
|
Vector newtonEuler(const Vector& Vb, const Vector& Fb, const Matrix& Inertia) {
|
|
Matrix W = Pose3::adjointMap((Vector(6) << Vb(0), Vb(1), Vb(2), 0., 0., 0.).finished());
|
|
Vector dV = Inertia.inverse()*(Fb - W*Inertia*Vb);
|
|
return dV;
|
|
}
|
|
|
|
TEST( DiscreteEulerPoincareHelicopter, evaluateError) {
|
|
Vector Fu = computeFu(gamma2, u2);
|
|
Vector fGravity_g1 = zero(6);
|
|
fGravity_g1.segment<3>(3) = g1.rotation().unrotate(Vector3(0, 0, -mass*9.81)); // gravity force in g1 frame
|
|
Vector Fb = Fu+fGravity_g1;
|
|
|
|
Vector dV = newtonEuler(V1_g1, Fb, Inertia);
|
|
Vector V2_g1 = dV*h + V1_g1;
|
|
Pose3 g21 = g2.between(g1);
|
|
Vector V2_g2 = g21.Adjoint(V2_g1); // convert the new velocity to g2's frame
|
|
|
|
Vector6 expectedv2(V2_g2);
|
|
|
|
// hard constraints don't need a noise model
|
|
DiscreteEulerPoincareHelicopter constraint(V(2), V(1), G(2), h,
|
|
Inertia, Fu, mass);
|
|
|
|
// verify error function
|
|
Matrix H1, H2, H3;
|
|
EXPECT(assert_equal(zero(6), constraint.evaluateError(expectedv2, V1_g1, g2, H1, H2, H3), 1e0));
|
|
|
|
Matrix numericalH1 = numericalDerivative31(
|
|
boost::function<Vector(const Vector6&, const Vector6&, const Pose3&)>(
|
|
boost::bind(&DiscreteEulerPoincareHelicopter::evaluateError, constraint, _1, _2, _3, boost::none, boost::none, boost::none)
|
|
),
|
|
expectedv2, V1_g1, g2, 1e-5
|
|
);
|
|
|
|
Matrix numericalH2 = numericalDerivative32(
|
|
boost::function<Vector(const Vector6&, const Vector6&, const Pose3&)>(
|
|
boost::bind(&DiscreteEulerPoincareHelicopter::evaluateError, constraint, _1, _2, _3, boost::none, boost::none, boost::none)
|
|
),
|
|
expectedv2, V1_g1, g2, 1e-5
|
|
);
|
|
|
|
Matrix numericalH3 = numericalDerivative33(
|
|
boost::function<Vector(const Vector6&, const Vector6&, const Pose3&)>(
|
|
boost::bind(&DiscreteEulerPoincareHelicopter::evaluateError, constraint, _1, _2, _3, boost::none, boost::none, boost::none)
|
|
),
|
|
expectedv2, V1_g1, g2, 1e-5
|
|
);
|
|
|
|
EXPECT(assert_equal(numericalH1,H1,1e-5));
|
|
EXPECT(assert_equal(numericalH2,H2,1e-5));
|
|
EXPECT(assert_equal(numericalH3,H3,5e-5));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
|
|
/* ************************************************************************* */
|