158 lines
5.7 KiB
C++
158 lines
5.7 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file KalmanFilter.cpp
|
|
*
|
|
* @brief Simple linear Kalman filter.
|
|
* Implemented using factor graphs, i.e., does Cholesky-based SRIF, really.
|
|
*
|
|
* @date Sep 3, 2011
|
|
* @author Stephen Williams
|
|
* @author Frank Dellaert
|
|
*/
|
|
|
|
#include <gtsam/linear/KalmanFilter.h>
|
|
#include <gtsam/linear/GaussianBayesNet.h>
|
|
#include <gtsam/linear/JacobianFactor.h>
|
|
#include <gtsam/linear/HessianFactor.h>
|
|
#include <gtsam/base/Testable.h>
|
|
|
|
|
|
using namespace std;
|
|
|
|
namespace gtsam {
|
|
|
|
/* ************************************************************************* */
|
|
// Auxiliary function to solve factor graph and return pointer to root conditional
|
|
KalmanFilter::State //
|
|
KalmanFilter::solve(const GaussianFactorGraph& factorGraph) const {
|
|
|
|
// Eliminate the graph using the provided Eliminate function
|
|
Ordering ordering(factorGraph.keys());
|
|
GaussianBayesNet::shared_ptr bayesNet = //
|
|
factorGraph.eliminateSequential(ordering, function_);
|
|
|
|
// As this is a filter, all we need is the posterior P(x_t).
|
|
// This is the last GaussianConditional in the resulting BayesNet
|
|
GaussianConditional::shared_ptr posterior = *(--bayesNet->end());
|
|
return std::make_shared<GaussianDensity>(*posterior);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Auxiliary function to create a small graph for predict or update and solve
|
|
KalmanFilter::State //
|
|
KalmanFilter::fuse(const State& p, GaussianFactor::shared_ptr newFactor) const {
|
|
|
|
// Create a factor graph
|
|
GaussianFactorGraph factorGraph;
|
|
factorGraph += p, newFactor;
|
|
|
|
// Eliminate graph in order x0, x1, to get Bayes net P(x0|x1)P(x1)
|
|
return solve(factorGraph);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
KalmanFilter::State KalmanFilter::init(const Vector& x0,
|
|
const SharedDiagonal& P0) const {
|
|
|
|
// Create a factor graph f(x0), eliminate it into P(x0)
|
|
GaussianFactorGraph factorGraph;
|
|
factorGraph += JacobianFactor(0, I_, x0, P0); // |x-x0|^2_diagSigma
|
|
return solve(factorGraph);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
KalmanFilter::State KalmanFilter::init(const Vector& x, const Matrix& P0) const {
|
|
|
|
// Create a factor graph f(x0), eliminate it into P(x0)
|
|
GaussianFactorGraph factorGraph;
|
|
factorGraph += HessianFactor(0, x, P0); // 0.5*(x-x0)'*inv(Sigma)*(x-x0)
|
|
return solve(factorGraph);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void KalmanFilter::print(const string& s) const {
|
|
cout << "KalmanFilter " << s << ", dim = " << n_ << endl;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
KalmanFilter::State KalmanFilter::predict(const State& p, const Matrix& F,
|
|
const Matrix& B, const Vector& u, const SharedDiagonal& model) const {
|
|
|
|
// The factor related to the motion model is defined as
|
|
// f2(x_{t},x_{t+1}) = (F*x_{t} + B*u - x_{t+1}) * Q^-1 * (F*x_{t} + B*u - x_{t+1})^T
|
|
Key k = step(p);
|
|
return fuse(p,
|
|
std::make_shared<JacobianFactor>(k, -F, k + 1, I_, B * u, model));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
KalmanFilter::State KalmanFilter::predictQ(const State& p, const Matrix& F,
|
|
const Matrix& B, const Vector& u, const Matrix& Q) const {
|
|
|
|
#ifndef NDEBUG
|
|
DenseIndex n = F.cols();
|
|
assert(F.rows() == n);
|
|
assert(B.rows() == n);
|
|
assert(B.cols() == u.size());
|
|
assert(Q.rows() == n);
|
|
assert(Q.cols() == n);
|
|
#endif
|
|
|
|
// The factor related to the motion model is defined as
|
|
// f2(x_{t},x_{t+1}) = (F*x_{t} + B*u - x_{t+1}) * Q^-1 * (F*x_{t} + B*u - x_{t+1})^T
|
|
// See documentation in HessianFactor, we have A1 = -F, A2 = I_, b = B*u:
|
|
// TODO: starts to seem more elaborate than straight-up KF equations?
|
|
Matrix M = Q.inverse(), Ft = trans(F);
|
|
Matrix G12 = -Ft * M, G11 = -G12 * F, G22 = M;
|
|
Vector b = B * u, g2 = M * b, g1 = -Ft * g2;
|
|
double f = dot(b, g2);
|
|
Key k = step(p);
|
|
return fuse(p,
|
|
std::make_shared<HessianFactor>(k, k + 1, G11, G12, g1, G22, g2, f));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
KalmanFilter::State KalmanFilter::predict2(const State& p, const Matrix& A0,
|
|
const Matrix& A1, const Vector& b, const SharedDiagonal& model) const {
|
|
// Nhe factor related to the motion model is defined as
|
|
// f2(x_{t},x_{t+1}) = |A0*x_{t} + A1*x_{t+1} - b|^2
|
|
Key k = step(p);
|
|
return fuse(p, std::make_shared<JacobianFactor>(k, A0, k + 1, A1, b, model));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
KalmanFilter::State KalmanFilter::update(const State& p, const Matrix& H,
|
|
const Vector& z, const SharedDiagonal& model) const {
|
|
// The factor related to the measurements would be defined as
|
|
// f2 = (h(x_{t}) - z_{t}) * R^-1 * (h(x_{t}) - z_{t})^T
|
|
// = (x_{t} - z_{t}) * R^-1 * (x_{t} - z_{t})^T
|
|
Key k = step(p);
|
|
return fuse(p, std::make_shared<JacobianFactor>(k, H, z, model));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
KalmanFilter::State KalmanFilter::updateQ(const State& p, const Matrix& H,
|
|
const Vector& z, const Matrix& Q) const {
|
|
Key k = step(p);
|
|
Matrix M = Q.inverse(), Ht = trans(H);
|
|
Matrix G = Ht * M * H;
|
|
Vector g = Ht * M * z;
|
|
double f = dot(z, M * z);
|
|
return fuse(p, std::make_shared<HessianFactor>(k, G, g, f));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
|
|
} // \namespace gtsam
|
|
|