gtsam/gtsam/3rdparty/GeographicLib/dotnet/NETGeographicLib/EllipticFunction.h

699 lines
28 KiB
C++

/**
* \file NETGeographicLib/EllipticFunction.h
* \brief Header for NETGeographicLib::EllipticFunction class
*
* NETGeographicLib is copyright (c) Scott Heiman (2013)
* GeographicLib is Copyright (c) Charles Karney (2010-2012)
* <charles@karney.com> and licensed under the MIT/X11 License.
* For more information, see
* http://geographiclib.sourceforge.net/
**********************************************************************/
#pragma once
namespace NETGeographicLib
{
/**
* \brief .NET wrapper for GeographicLib::EllipticFunction.
*
* This class allows .NET applications to access GeographicLib::EllipticFunction.
*
* This provides the elliptic functions and integrals needed for Ellipsoid,
* GeodesicExact, and TransverseMercatorExact. Two categories of function
* are provided:
* - \e static functions to compute symmetric elliptic integrals
* (http://dlmf.nist.gov/19.16.i)
* - \e member functions to compute Legrendre's elliptic
* integrals (http://dlmf.nist.gov/19.2.ii) and the
* Jacobi elliptic functions (http://dlmf.nist.gov/22.2).
* .
* In the latter case, an object is constructed giving the modulus \e k (and
* optionally the parameter &alpha;<sup>2</sup>). The modulus is always
* passed as its square <i>k</i><sup>2</sup> which allows \e k to be pure
* imaginary (<i>k</i><sup>2</sup> &lt; 0). (Confusingly, Abramowitz and
* Stegun call \e m = <i>k</i><sup>2</sup> the "parameter" and \e n =
* &alpha;<sup>2</sup> the "characteristic".)
*
* In geodesic applications, it is convenient to separate the incomplete
* integrals into secular and periodic components, e.g.,
* \f[
* E(\phi, k) = (2 E(\phi) / \pi) [ \phi + \delta E(\phi, k) ]
* \f]
* where &delta;\e E(&phi;, \e k) is an odd periodic function with period
* &pi;.
*
* The computation of the elliptic integrals uses the algorithms given in
* - B. C. Carlson,
* <a href="http://dx.doi.org/10.1007/BF02198293"> Computation of real or
* complex elliptic integrals</a>, Numerical Algorithms 10, 13--26 (1995)
* .
* with the additional optimizations given in http://dlmf.nist.gov/19.36.i.
* The computation of the Jacobi elliptic functions uses the algorithm given
* in
* - R. Bulirsch,
* <a href="http://dx.doi.org/10.1007/BF01397975"> Numerical Calculation of
* Elliptic Integrals and Elliptic Functions</a>, Numericshe Mathematik 7,
* 78--90 (1965).
* .
* The notation follows http://dlmf.nist.gov/19 and http://dlmf.nist.gov/22
*
* C# Example:
* \include example-EllipticFunction.cs
* Managed C++ Example:
* \include example-EllipticFunction.cpp
* Visual Basic Example:
* \include example-EllipticFunction.vb
*
* <B>INTERFACE DIFFERENCES:</B><BR>
* The k2, kp2, alpha2, and alphap2 functions are implemented as properties.
**********************************************************************/
public ref class EllipticFunction
{
private:
// a pointer to the unmanaged GeographicLib::EllipticFunction.
GeographicLib::EllipticFunction* m_pEllipticFunction;
// The finalizer frees the unmanaged memory.
!EllipticFunction();
public:
/** \name Constructor
**********************************************************************/
///@{
/**
* Constructor specifying the modulus and parameter.
*
* @param[in] k2 the square of the modulus <i>k</i><sup>2</sup>.
* <i>k</i><sup>2</sup> must lie in (-&infin;, 1). (No checking is
* done.)
* @param[in] alpha2 the parameter &alpha;<sup>2</sup>.
* &alpha;<sup>2</sup> must lie in (-&infin;, 1). (No checking is done.)
*
* If only elliptic integrals of the first and second kinds are needed,
* then set &alpha;<sup>2</sup> = 0 (the default value); in this case, we
* have &Pi;(&phi;, 0, \e k) = \e F(&phi;, \e k), \e G(&phi;, 0, \e k) = \e
* E(&phi;, \e k), and \e H(&phi;, 0, \e k) = \e F(&phi;, \e k) - \e
* D(&phi;, \e k).
**********************************************************************/
EllipticFunction(double k2, double alpha2 );
/**
* Constructor specifying the modulus and parameter and their complements.
*
* @param[in] k2 the square of the modulus <i>k</i><sup>2</sup>.
* <i>k</i><sup>2</sup> must lie in (-&infin;, 1). (No checking is
* done.)
* @param[in] alpha2 the parameter &alpha;<sup>2</sup>.
* &alpha;<sup>2</sup> must lie in (-&infin;, 1). (No checking is done.)
* @param[in] kp2 the complementary modulus squared <i>k'</i><sup>2</sup> =
* 1 &minus; <i>k</i><sup>2</sup>.
* @param[in] alphap2 the complementary parameter &alpha;'<sup>2</sup> = 1
* &minus; &alpha;<sup>2</sup>.
*
* The arguments must satisfy \e k2 + \e kp2 = 1 and \e alpha2 + \e alphap2
* = 1. (No checking is done that these conditions are met.) This
* constructor is provided to enable accuracy to be maintained, e.g., when
* \e k is very close to unity.
**********************************************************************/
EllipticFunction(double k2, double alpha2, double kp2, double alphap2);
/**
* Destructor calls the finalizer.
**********************************************************************/
~EllipticFunction()
{ this->!EllipticFunction(); }
/**
* Reset the modulus and parameter.
*
* @param[in] k2 the new value of square of the modulus
* <i>k</i><sup>2</sup> which must lie in (-&infin;, 1). (No checking is
* done.)
* @param[in] alpha2 the new value of parameter &alpha;<sup>2</sup>.
* &alpha;<sup>2</sup> must lie in (-&infin;, 1). (No checking is done.)
**********************************************************************/
void Reset(double k2, double alpha2 );
/**
* Reset the modulus and parameter supplying also their complements.
*
* @param[in] k2 the square of the modulus <i>k</i><sup>2</sup>.
* <i>k</i><sup>2</sup> must lie in (-&infin;, 1). (No checking is
* done.)
* @param[in] alpha2 the parameter &alpha;<sup>2</sup>.
* &alpha;<sup>2</sup> must lie in (-&infin;, 1). (No checking is done.)
* @param[in] kp2 the complementary modulus squared <i>k'</i><sup>2</sup> =
* 1 &minus; <i>k</i><sup>2</sup>.
* @param[in] alphap2 the complementary parameter &alpha;'<sup>2</sup> = 1
* &minus; &alpha;<sup>2</sup>.
*
* The arguments must satisfy \e k2 + \e kp2 = 1 and \e alpha2 + \e alphap2
* = 1. (No checking is done that these conditions are met.) This
* constructor is provided to enable accuracy to be maintained, e.g., when
* is very small.
**********************************************************************/
void Reset(double k2, double alpha2, double kp2, double alphap2);
///@}
/** \name Inspector functions.
**********************************************************************/
///@{
/**
* @return the square of the modulus <i>k</i><sup>2</sup>.
**********************************************************************/
property double k2 { double get(); }
/**
* @return the square of the complementary modulus <i>k'</i><sup>2</sup> =
* 1 &minus; <i>k</i><sup>2</sup>.
**********************************************************************/
property double kp2 { double get(); }
/**
* @return the parameter &alpha;<sup>2</sup>.
**********************************************************************/
property double alpha2 { double get(); }
/**
* @return the complementary parameter &alpha;'<sup>2</sup> = 1 &minus;
* &alpha;<sup>2</sup>.
**********************************************************************/
property double alphap2 { double get(); }
///@}
/** \name Complete elliptic integrals.
**********************************************************************/
///@{
/**
* The complete integral of the first kind.
*
* @return \e K(\e k).
*
* \e K(\e k) is defined in http://dlmf.nist.gov/19.2.E4
* \f[
* K(k) = \int_0^{\pi/2} \frac1{\sqrt{1-k^2\sin^2\phi}}\,d\phi.
* \f]
**********************************************************************/
double K();
/**
* The complete integral of the second kind.
*
* @return \e E(\e k)
*
* \e E(\e k) is defined in http://dlmf.nist.gov/19.2.E5
* \f[
* E(k) = \int_0^{\pi/2} \sqrt{1-k^2\sin^2\phi}\,d\phi.
* \f]
**********************************************************************/
double E();
/**
* Jahnke's complete integral.
*
* @return \e D(\e k).
*
* \e D(\e k) is defined in http://dlmf.nist.gov/19.2.E6
* \f[
* D(k) = \int_0^{\pi/2} \frac{\sin^2\phi}{\sqrt{1-k^2\sin^2\phi}}\,d\phi.
* \f]
**********************************************************************/
double D();
/**
* The difference between the complete integrals of the first and second
* kinds.
*
* @return \e K(\e k) &minus; \e E(\e k).
**********************************************************************/
double KE();
/**
* The complete integral of the third kind.
*
* @return &Pi;(&alpha;<sup>2</sup>, \e k)
*
* &Pi;(&alpha;<sup>2</sup>, \e k) is defined in
* http://dlmf.nist.gov/19.2.E7
* \f[
* \Pi(\alpha^2, k) = \int_0^{\pi/2}
* \frac1{\sqrt{1-k^2\sin^2\phi}(1 - \alpha^2\sin^2\phi_)}\,d\phi.
* \f]
**********************************************************************/
double Pi();
/**
* Legendre's complete geodesic longitude integral.
*
* @return \e G(&alpha;<sup>2</sup>, \e k)
*
* \e G(&alpha;<sup>2</sup>, \e k) is given by
* \f[
* G(\alpha^2, k) = \int_0^{\pi/2}
* \frac{\sqrt{1-k^2\sin^2\phi}}{1 - \alpha^2\sin^2\phi}\,d\phi.
* \f]
**********************************************************************/
double G();
/**
* Cayley's complete geodesic longitude difference integral.
*
* @return \e H(&alpha;<sup>2</sup>, \e k)
*
* \e H(&alpha;<sup>2</sup>, \e k) is given by
* \f[
* H(\alpha^2, k) = \int_0^{\pi/2}
* \frac{\cos^2\phi}{(1-\alpha^2\sin^2\phi)\sqrt{1-k^2\sin^2\phi}}
* \,d\phi.
* \f]
**********************************************************************/
double H();
///@}
/** \name Incomplete elliptic integrals.
**********************************************************************/
///@{
/**
* The incomplete integral of the first kind.
*
* @param[in] phi
* @return \e F(&phi;, \e k).
*
* \e F(&phi;, \e k) is defined in http://dlmf.nist.gov/19.2.E4
* \f[
* F(\phi, k) = \int_0^\phi \frac1{\sqrt{1-k^2\sin^2\theta}}\,d\theta.
* \f]
**********************************************************************/
double F(double phi);
/**
* The incomplete integral of the second kind.
*
* @param[in] phi
* @return \e E(&phi;, \e k).
*
* \e E(&phi;, \e k) is defined in http://dlmf.nist.gov/19.2.E5
* \f[
* E(\phi, k) = \int_0^\phi \sqrt{1-k^2\sin^2\theta}\,d\theta.
* \f]
**********************************************************************/
double E(double phi);
/**
* The incomplete integral of the second kind with the argument given in
* degrees.
*
* @param[in] ang in <i>degrees</i>.
* @return \e E(&pi; <i>ang</i>/180, \e k).
**********************************************************************/
double Ed(double ang);
/**
* The inverse of the incomplete integral of the second kind.
*
* @param[in] x
* @return &phi; = <i>E</i><sup>&minus;1</sup>(\e x, \e k); i.e., the
* solution of such that \e E(&phi;, \e k) = \e x.
**********************************************************************/
double Einv(double x);
/**
* The incomplete integral of the third kind.
*
* @param[in] phi
* @return &Pi;(&phi;, &alpha;<sup>2</sup>, \e k).
*
* &Pi;(&phi;, &alpha;<sup>2</sup>, \e k) is defined in
* http://dlmf.nist.gov/19.2.E7
* \f[
* \Pi(\phi, \alpha^2, k) = \int_0^\phi
* \frac1{\sqrt{1-k^2\sin^2\theta}(1 - \alpha^2\sin^2\theta_)}\,d\theta.
* \f]
**********************************************************************/
double Pi(double phi);
/**
* Jahnke's incomplete elliptic integral.
*
* @param[in] phi
* @return \e D(&phi;, \e k).
*
* \e D(&phi;, \e k) is defined in http://dlmf.nist.gov/19.2.E4
* \f[
* D(\phi, k) = \int_0^\phi
* \frac{\sin^2\theta}{\sqrt{1-k^2\sin^2\theta}}\,d\theta.
* \f]
**********************************************************************/
double D(double phi);
/**
* Legendre's geodesic longitude integral.
*
* @param[in] phi
* @return \e G(&phi;, &alpha;<sup>2</sup>, \e k).
*
* \e G(&phi;, &alpha;<sup>2</sup>, \e k) is defined by
* \f[
* \begin{aligned}
* G(\phi, \alpha^2, k) &=
* \frac{k^2}{\alpha^2} F(\phi, k) +
* \biggl(1 - \frac{k^2}{\alpha^2}\biggr) \Pi(\phi, \alpha^2, k) \\
* &= \int_0^\phi
* \frac{\sqrt{1-k^2\sin^2\theta}}{1 - \alpha^2\sin^2\theta}\,d\theta.
* \end{aligned}
* \f]
*
* Legendre expresses the longitude of a point on the geodesic in terms of
* this combination of elliptic integrals in Exercices de Calcul
* Int&eacute;gral, Vol. 1 (1811), p. 181,
* http://books.google.com/books?id=riIOAAAAQAAJ&pg=PA181.
*
* See \ref geodellip for the expression for the longitude in terms of this
* function.
**********************************************************************/
double G(double phi);
/**
* Cayley's geodesic longitude difference integral.
*
* @param[in] phi
* @return \e H(&phi;, &alpha;<sup>2</sup>, \e k).
*
* \e H(&phi;, &alpha;<sup>2</sup>, \e k) is defined by
* \f[
* \begin{aligned}
* H(\phi, \alpha^2, k) &=
* \frac1{\alpha^2} F(\phi, k) +
* \biggl(1 - \frac1{\alpha^2}\biggr) \Pi(\phi, \alpha^2, k) \\
* &= \int_0^\phi
* \frac{\cos^2\theta}{(1-\alpha^2\sin^2\theta)\sqrt{1-k^2\sin^2\theta}}
* \,d\theta.
* \end{aligned}
* \f]
*
* Cayley expresses the longitude difference of a point on the geodesic in
* terms of this combination of elliptic integrals in Phil. Mag. <b>40</b>
* (1870), p. 333, http://books.google.com/books?id=Zk0wAAAAIAAJ&pg=PA333.
*
* See \ref geodellip for the expression for the longitude in terms of this
* function.
**********************************************************************/
double H(double phi);
///@}
/** \name Incomplete integrals in terms of Jacobi elliptic functions.
**********************************************************************/
/**
* The incomplete integral of the first kind in terms of Jacobi elliptic
* functions.
*
* @param[in] sn = sin&phi;
* @param[in] cn = cos&phi;
* @param[in] dn = sqrt(1 &minus; <i>k</i><sup>2</sup>
* sin<sup>2</sup>&phi;)
* @return \e F(&phi;, \e k) as though &phi; &isin; (&minus;&pi;, &pi;].
**********************************************************************/
double F(double sn, double cn, double dn);
/**
* The incomplete integral of the second kind in terms of Jacobi elliptic
* functions.
*
* @param[in] sn = sin&phi;
* @param[in] cn = cos&phi;
* @param[in] dn = sqrt(1 &minus; <i>k</i><sup>2</sup>
* sin<sup>2</sup>&phi;)
* @return \e E(&phi;, \e k) as though &phi; &isin; (&minus;&pi;, &pi;].
**********************************************************************/
double E(double sn, double cn, double dn);
/**
* The incomplete integral of the third kind in terms of Jacobi elliptic
* functions.
*
* @param[in] sn = sin&phi;
* @param[in] cn = cos&phi;
* @param[in] dn = sqrt(1 &minus; <i>k</i><sup>2</sup>
* sin<sup>2</sup>&phi;)
* @return &Pi;(&phi;, &alpha;<sup>2</sup>, \e k) as though &phi; &isin;
* (&minus;&pi;, &pi;].
**********************************************************************/
double Pi(double sn, double cn, double dn);
/**
* Jahnke's incomplete elliptic integral in terms of Jacobi elliptic
* functions.
*
* @param[in] sn = sin&phi;
* @param[in] cn = cos&phi;
* @param[in] dn = sqrt(1 &minus; <i>k</i><sup>2</sup>
* sin<sup>2</sup>&phi;)
* @return \e D(&phi;, \e k) as though &phi; &isin; (&minus;&pi;, &pi;].
**********************************************************************/
double D(double sn, double cn, double dn);
/**
* Legendre's geodesic longitude integral in terms of Jacobi elliptic
* functions.
*
* @param[in] sn = sin&phi;
* @param[in] cn = cos&phi;
* @param[in] dn = sqrt(1 &minus; <i>k</i><sup>2</sup>
* sin<sup>2</sup>&phi;)
* @return \e G(&phi;, &alpha;<sup>2</sup>, \e k) as though &phi; &isin;
* (&minus;&pi;, &pi;].
**********************************************************************/
double G(double sn, double cn, double dn);
/**
* Cayley's geodesic longitude difference integral in terms of Jacobi
* elliptic functions.
*
* @param[in] sn = sin&phi;
* @param[in] cn = cos&phi;
* @param[in] dn = sqrt(1 &minus; <i>k</i><sup>2</sup>
* sin<sup>2</sup>&phi;)
* @return \e H(&phi;, &alpha;<sup>2</sup>, \e k) as though &phi; &isin;
* (&minus;&pi;, &pi;].
**********************************************************************/
double H(double sn, double cn, double dn);
///@}
/** \name Periodic versions of incomplete elliptic integrals.
**********************************************************************/
///@{
/**
* The periodic incomplete integral of the first kind.
*
* @param[in] sn = sin&phi;
* @param[in] cn = cos&phi;
* @param[in] dn = sqrt(1 &minus; <i>k</i><sup>2</sup>
* sin<sup>2</sup>&phi;)
* @return the periodic function &pi; \e F(&phi;, \e k) / (2 \e K(\e k)) -
* &phi;
**********************************************************************/
double deltaF(double sn, double cn, double dn);
/**
* The periodic incomplete integral of the second kind.
*
* @param[in] sn = sin&phi;
* @param[in] cn = cos&phi;
* @param[in] dn = sqrt(1 &minus; <i>k</i><sup>2</sup>
* sin<sup>2</sup>&phi;)
* @return the periodic function &pi; \e E(&phi;, \e k) / (2 \e E(\e k)) -
* &phi;
**********************************************************************/
double deltaE(double sn, double cn, double dn);
/**
* The periodic inverse of the incomplete integral of the second kind.
*
* @param[in] stau = sin&tau;
* @param[in] ctau = sin&tau;
* @return the periodic function <i>E</i><sup>&minus;1</sup>(&tau; (2 \e
* E(\e k)/&pi;), \e k) - &tau;
**********************************************************************/
double deltaEinv(double stau, double ctau);
/**
* The periodic incomplete integral of the third kind.
*
* @param[in] sn = sin&phi;
* @param[in] cn = cos&phi;
* @param[in] dn = sqrt(1 &minus; <i>k</i><sup>2</sup>
* sin<sup>2</sup>&phi;)
* @return the periodic function &pi; &Pi;(&phi;, \e k) / (2 &Pi;(\e k)) -
* &phi;
**********************************************************************/
double deltaPi(double sn, double cn, double dn);
/**
* The periodic Jahnke's incomplete elliptic integral.
*
* @param[in] sn = sin&phi;
* @param[in] cn = cos&phi;
* @param[in] dn = sqrt(1 &minus; <i>k</i><sup>2</sup>
* sin<sup>2</sup>&phi;)
* @return the periodic function &pi; \e D(&phi;, \e k) / (2 \e D(\e k)) -
* &phi;
**********************************************************************/
double deltaD(double sn, double cn, double dn);
/**
* Legendre's periodic geodesic longitude integral.
*
* @param[in] sn = sin&phi;
* @param[in] cn = cos&phi;
* @param[in] dn = sqrt(1 &minus; <i>k</i><sup>2</sup>
* sin<sup>2</sup>&phi;)
* @return the periodic function &pi; \e G(&phi;, \e k) / (2 \e G(\e k)) -
* &phi;
**********************************************************************/
double deltaG(double sn, double cn, double dn);
/**
* Cayley's periodic geodesic longitude difference integral.
*
* @param[in] sn = sin&phi;
* @param[in] cn = cos&phi;
* @param[in] dn = sqrt(1 &minus; <i>k</i><sup>2</sup>
* sin<sup>2</sup>&phi;)
* @return the periodic function &pi; \e H(&phi;, \e k) / (2 \e H(\e k)) -
* &phi;
**********************************************************************/
double deltaH(double sn, double cn, double dn);
///@}
/** \name Elliptic functions.
**********************************************************************/
///@{
/**
* The Jacobi elliptic functions.
*
* @param[in] x the argument.
* @param[out] sn sn(\e x, \e k).
* @param[out] cn cn(\e x, \e k).
* @param[out] dn dn(\e x, \e k).
**********************************************************************/
void sncndn(double x,
[System::Runtime::InteropServices::Out] double% sn,
[System::Runtime::InteropServices::Out] double% cn,
[System::Runtime::InteropServices::Out] double% dn);
/**
* The &Delta; amplitude function.
*
* @param[in] sn sin&phi;
* @param[in] cn cos&phi;
* @return &Delta; = sqrt(1 &minus; <i>k</i><sup>2</sup>
* sin<sup>2</sup>&phi;)
**********************************************************************/
double Delta(double sn, double cn);
///@}
/** \name Symmetric elliptic integrals.
**********************************************************************/
///@{
/**
* Symmetric integral of the first kind <i>R<sub>F</sub></i>.
*
* @param[in] x
* @param[in] y
* @param[in] z
* @return <i>R<sub>F</sub></i>(\e x, \e y, \e z)
*
* <i>R<sub>F</sub></i> is defined in http://dlmf.nist.gov/19.16.E1
* \f[ R_F(x, y, z) = \frac12
* \int_0^\infty\frac1{\sqrt{(t + x) (t + y) (t + z)}}\, dt \f]
* If one of the arguments is zero, it is more efficient to call the
* two-argument version of this function with the non-zero arguments.
**********************************************************************/
static double RF(double x, double y, double z);
/**
* Complete symmetric integral of the first kind, <i>R<sub>F</sub></i> with
* one argument zero.
*
* @param[in] x
* @param[in] y
* @return <i>R<sub>F</sub></i>(\e x, \e y, 0)
**********************************************************************/
static double RF(double x, double y);
/**
* Degenerate symmetric integral of the first kind <i>R<sub>C</sub></i>.
*
* @param[in] x
* @param[in] y
* @return <i>R<sub>C</sub></i>(\e x, \e y) = <i>R<sub>F</sub></i>(\e x, \e
* y, \e y)
*
* <i>R<sub>C</sub></i> is defined in http://dlmf.nist.gov/19.2.E17
* \f[ R_C(x, y) = \frac12
* \int_0^\infty\frac1{\sqrt{t + x}(t + y)}\,dt \f]
**********************************************************************/
static double RC(double x, double y);
/**
* Symmetric integral of the second kind <i>R<sub>G</sub></i>.
*
* @param[in] x
* @param[in] y
* @param[in] z
* @return <i>R<sub>G</sub></i>(\e x, \e y, \e z)
*
* <i>R<sub>G</sub></i> is defined in Carlson, eq 1.5
* \f[ R_G(x, y, z) = \frac14
* \int_0^\infty[(t + x) (t + y) (t + z)]^{-1/2}
* \biggl(
* \frac x{t + x} + \frac y{t + y} + \frac z{t + z}
* \biggr)t\,dt \f]
* See also http://dlmf.nist.gov/19.16.E3.
* If one of the arguments is zero, it is more efficient to call the
* two-argument version of this function with the non-zero arguments.
**********************************************************************/
static double RG(double x, double y, double z);
/**
* Complete symmetric integral of the second kind, <i>R<sub>G</sub></i>
* with one argument zero.
*
* @param[in] x
* @param[in] y
* @return <i>R<sub>G</sub></i>(\e x, \e y, 0)
**********************************************************************/
static double RG(double x, double y);
/**
* Symmetric integral of the third kind <i>R<sub>J</sub></i>.
*
* @param[in] x
* @param[in] y
* @param[in] z
* @param[in] p
* @return <i>R<sub>J</sub></i>(\e x, \e y, \e z, \e p)
*
* <i>R<sub>J</sub></i> is defined in http://dlmf.nist.gov/19.16.E2
* \f[ R_J(x, y, z, p) = \frac32
* \int_0^\infty[(t + x) (t + y) (t + z)]^{-1/2} (t + p)^{-1}\, dt \f]
**********************************************************************/
static double RJ(double x, double y, double z, double p);
/**
* Degenerate symmetric integral of the third kind <i>R<sub>D</sub></i>.
*
* @param[in] x
* @param[in] y
* @param[in] z
* @return <i>R<sub>D</sub></i>(\e x, \e y, \e z) = <i>R<sub>J</sub></i>(\e
* x, \e y, \e z, \e z)
*
* <i>R<sub>D</sub></i> is defined in http://dlmf.nist.gov/19.16.E5
* \f[ R_D(x, y, z) = \frac32
* \int_0^\infty[(t + x) (t + y)]^{-1/2} (t + z)^{-3/2}\, dt \f]
**********************************************************************/
static double RD(double x, double y, double z);
///@}
};
} // namespace NETGeographicLib