476 lines
7.1 KiB
Plaintext
476 lines
7.1 KiB
Plaintext
#LyX 2.0 created this file. For more info see http://www.lyx.org/
|
|
\lyxformat 413
|
|
\begin_document
|
|
\begin_header
|
|
\textclass article
|
|
\use_default_options true
|
|
\maintain_unincluded_children false
|
|
\language english
|
|
\language_package default
|
|
\inputencoding auto
|
|
\fontencoding global
|
|
\font_roman default
|
|
\font_sans default
|
|
\font_typewriter default
|
|
\font_default_family default
|
|
\use_non_tex_fonts false
|
|
\font_sc false
|
|
\font_osf false
|
|
\font_sf_scale 100
|
|
\font_tt_scale 100
|
|
|
|
\graphics default
|
|
\default_output_format default
|
|
\output_sync 0
|
|
\bibtex_command default
|
|
\index_command default
|
|
\paperfontsize 11
|
|
\spacing single
|
|
\use_hyperref false
|
|
\papersize default
|
|
\use_geometry true
|
|
\use_amsmath 1
|
|
\use_esint 1
|
|
\use_mhchem 1
|
|
\use_mathdots 1
|
|
\cite_engine basic
|
|
\use_bibtopic false
|
|
\use_indices false
|
|
\paperorientation portrait
|
|
\suppress_date false
|
|
\use_refstyle 1
|
|
\index Index
|
|
\shortcut idx
|
|
\color #008000
|
|
\end_index
|
|
\leftmargin 3cm
|
|
\topmargin 3cm
|
|
\rightmargin 3cm
|
|
\bottommargin 3cm
|
|
\secnumdepth 3
|
|
\tocdepth 3
|
|
\paragraph_separation indent
|
|
\paragraph_indentation default
|
|
\quotes_language english
|
|
\papercolumns 1
|
|
\papersides 1
|
|
\paperpagestyle default
|
|
\tracking_changes false
|
|
\output_changes false
|
|
\html_math_output 0
|
|
\html_css_as_file 0
|
|
\html_be_strict false
|
|
\end_header
|
|
|
|
\begin_body
|
|
|
|
\begin_layout Title
|
|
Manifold Geometry of the Sphere
|
|
\begin_inset Formula $S^{2}$
|
|
\end_inset
|
|
|
|
|
|
\end_layout
|
|
|
|
\begin_layout Author
|
|
Frank, Can, and Manohar
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
\begin_inset FormulaMacro
|
|
\newcommand{\xihat}{z}
|
|
{z}
|
|
\end_inset
|
|
|
|
|
|
\end_layout
|
|
|
|
\begin_layout Subsubsection*
|
|
Retraction
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
Suppose we have a point
|
|
\begin_inset Formula $p\in S^{2}$
|
|
\end_inset
|
|
|
|
and a 3-vector
|
|
\begin_inset Formula $\xihat$
|
|
\end_inset
|
|
|
|
, Absil
|
|
\begin_inset CommandInset citation
|
|
LatexCommand cite
|
|
key "Absil07book"
|
|
|
|
\end_inset
|
|
|
|
tells us we can simply add
|
|
\begin_inset Formula $\xihat$
|
|
\end_inset
|
|
|
|
to
|
|
\begin_inset Formula $p$
|
|
\end_inset
|
|
|
|
and renormalize to get a new point
|
|
\begin_inset Formula $q$
|
|
\end_inset
|
|
|
|
on the sphere.
|
|
This is what he calls a
|
|
\series bold
|
|
retraction
|
|
\family roman
|
|
\series medium
|
|
\shape up
|
|
\size normal
|
|
\emph off
|
|
\bar no
|
|
\strikeout off
|
|
\uuline off
|
|
\uwave off
|
|
\noun off
|
|
\color none
|
|
|
|
\begin_inset Formula $R_{p}(\xihat)$
|
|
\end_inset
|
|
|
|
,
|
|
\family default
|
|
\series default
|
|
\shape default
|
|
\size default
|
|
\emph default
|
|
\bar default
|
|
\strikeout default
|
|
\uuline default
|
|
\uwave default
|
|
\noun default
|
|
\color inherit
|
|
|
|
\begin_inset Formula
|
|
\[
|
|
q=R_{p}(\xihat)=\frac{p+\xihat}{\left\Vert p+z\right\Vert }=\frac{p+\xihat}{\alpha}
|
|
\]
|
|
|
|
\end_inset
|
|
|
|
with
|
|
\begin_inset Formula $\alpha$
|
|
\end_inset
|
|
|
|
the norm of
|
|
\begin_inset Formula $p+\xihat$
|
|
\end_inset
|
|
|
|
.
|
|
The only restriction on
|
|
\begin_inset Formula $\xihat$
|
|
\end_inset
|
|
|
|
is that it is in the tangent space
|
|
\begin_inset Formula $T_{p}S^{2}$
|
|
\end_inset
|
|
|
|
at
|
|
\begin_inset Formula $p$
|
|
\end_inset
|
|
|
|
, i.e.,
|
|
\begin_inset Formula $p^{T}\xihat=0$
|
|
\end_inset
|
|
|
|
.
|
|
Multiplying with
|
|
\begin_inset Formula $p^{T}$
|
|
\end_inset
|
|
|
|
on both sides we have
|
|
\begin_inset Formula
|
|
\[
|
|
\alpha p^{T}q=p^{T}p+p^{T}\xihat
|
|
\]
|
|
|
|
\end_inset
|
|
|
|
and (since
|
|
\begin_inset Formula $p^{T}p=1$
|
|
\end_inset
|
|
|
|
and
|
|
\begin_inset Formula $p^{T}\xihat=0$
|
|
\end_inset
|
|
|
|
) we have
|
|
\begin_inset Formula $\alpha=1/(p^{T}q)$
|
|
\end_inset
|
|
|
|
.
|
|
\end_layout
|
|
|
|
\begin_layout Subsubsection*
|
|
Inverse
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
Suppose we are given points
|
|
\begin_inset Formula $p$
|
|
\end_inset
|
|
|
|
and
|
|
\begin_inset Formula $q$
|
|
\end_inset
|
|
|
|
on the sphere, what is the tangent vector
|
|
\begin_inset Formula $\xihat$
|
|
\end_inset
|
|
|
|
that takes
|
|
\begin_inset Formula $p$
|
|
\end_inset
|
|
|
|
to
|
|
\begin_inset Formula $q$
|
|
\end_inset
|
|
|
|
? We can find a basis
|
|
\begin_inset Formula $B$
|
|
\end_inset
|
|
|
|
for the tangent space, with
|
|
\begin_inset Formula $B=\left[b_{1}|b_{2}\right]$
|
|
\end_inset
|
|
|
|
a
|
|
\begin_inset Formula $3\times2$
|
|
\end_inset
|
|
|
|
matrix, by either
|
|
\end_layout
|
|
|
|
\begin_layout Enumerate
|
|
Decompose
|
|
\begin_inset Formula $p=QR$
|
|
\end_inset
|
|
|
|
, with
|
|
\begin_inset Formula $Q$
|
|
\end_inset
|
|
|
|
orthonormal and
|
|
\begin_inset Formula $R$
|
|
\end_inset
|
|
|
|
of the form
|
|
\begin_inset Formula $[1\,0\,0]^{T}$
|
|
\end_inset
|
|
|
|
, and hence
|
|
\begin_inset Formula $p=Q_{1}$
|
|
\end_inset
|
|
|
|
.
|
|
The basis
|
|
\begin_inset Formula $B=\left[Q_{2}|Q_{3}\right]$
|
|
\end_inset
|
|
|
|
, i.e., the last two columns of
|
|
\begin_inset Formula $Q$
|
|
\end_inset
|
|
|
|
.
|
|
\end_layout
|
|
|
|
\begin_layout Enumerate
|
|
Form
|
|
\begin_inset Formula $b_{1}=p\times a$
|
|
\end_inset
|
|
|
|
, with
|
|
\begin_inset Formula $a$
|
|
\end_inset
|
|
|
|
(consistently) chosen to be non-parallel to
|
|
\begin_inset Formula $p$
|
|
\end_inset
|
|
|
|
, and
|
|
\begin_inset Formula $b_{2}=p\times b_{1}$
|
|
\end_inset
|
|
|
|
.
|
|
|
|
\begin_inset Note Note
|
|
status collapsed
|
|
|
|
\begin_layout Plain Layout
|
|
To choose
|
|
\begin_inset Formula $a$
|
|
\end_inset
|
|
|
|
, one way is to divide the sphere into regions, e.g., pick the axis
|
|
\begin_inset Formula $e_{i}$
|
|
\end_inset
|
|
|
|
such that
|
|
\begin_inset Formula $e_{i}^{T}p$
|
|
\end_inset
|
|
|
|
is smallest.
|
|
However, that leads to discontinuous boundaries.
|
|
Since
|
|
\begin_inset Formula $0\leq\left|e_{i}^{T}p\right|\leq1$
|
|
\end_inset
|
|
|
|
for all
|
|
\begin_inset Formula $p\in S^{2}$
|
|
\end_inset
|
|
|
|
, a better idea might be to use a mixture, e.g.,
|
|
\begin_inset Formula
|
|
\[
|
|
a=\frac{1}{2(x^{2}+y^{2}+z^{2})}\left[\begin{array}{c}
|
|
y^{2}+z^{2}\\
|
|
x^{2}+z^{2}\\
|
|
x^{2}+y^{2}
|
|
\end{array}\right]
|
|
\]
|
|
|
|
\end_inset
|
|
|
|
|
|
\end_layout
|
|
|
|
\end_inset
|
|
|
|
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
Now, if
|
|
\begin_inset Formula $\xihat=B\xi$
|
|
\end_inset
|
|
|
|
with
|
|
\begin_inset Formula $\xi\in R^{2}$
|
|
\end_inset
|
|
|
|
the 2D coordinate in the tangent plane basis
|
|
\begin_inset Formula $B$
|
|
\end_inset
|
|
|
|
, we have
|
|
\begin_inset Formula
|
|
\[
|
|
\alpha q=p+\xihat=p+B\xi
|
|
\]
|
|
|
|
\end_inset
|
|
|
|
If we multiply both sides with
|
|
\begin_inset Formula $B^{T}$
|
|
\end_inset
|
|
|
|
(project on the basis
|
|
\begin_inset Formula $B$
|
|
\end_inset
|
|
|
|
) we obtain
|
|
\begin_inset Formula
|
|
\[
|
|
\alpha B^{T}q=B^{T}p+B^{T}B\xi
|
|
\]
|
|
|
|
\end_inset
|
|
|
|
and because
|
|
\begin_inset Formula $B^{T}p=0$
|
|
\end_inset
|
|
|
|
and
|
|
\begin_inset Formula $B^{T}B=I$
|
|
\end_inset
|
|
|
|
we trivially obtain
|
|
\begin_inset Formula $\xi$
|
|
\end_inset
|
|
|
|
as the scaled projection
|
|
\begin_inset Formula $B^{T}q$
|
|
\end_inset
|
|
|
|
:
|
|
\begin_inset Formula
|
|
\[
|
|
\xi=\alpha B^{T}q=\frac{B^{T}q}{p^{T}q}
|
|
\]
|
|
|
|
\end_inset
|
|
|
|
|
|
\end_layout
|
|
|
|
\begin_layout Subsubsection*
|
|
Exponential Map
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
The exponential map itself is not so difficult, and is given in Ma01ijcv,
|
|
as well as in this CVPR tutorial by Anuj Srivastava:
|
|
\begin_inset CommandInset href
|
|
LatexCommand href
|
|
name "http://stat.fsu.edu/~anuj/CVPR_Tutorial/Part2.pdf"
|
|
|
|
\end_inset
|
|
|
|
.
|
|
|
|
\begin_inset Formula
|
|
\[
|
|
\exp_{p}\xihat=\cos\left(\left\Vert \xihat\right\Vert \right)p+\sin\left(\left\Vert \xihat\right\Vert \right)\frac{\xihat}{\left\Vert \xihat\right\Vert }
|
|
\]
|
|
|
|
\end_inset
|
|
|
|
The latter also gives the inverse, i.e., get the tangent vector
|
|
\begin_inset Formula $z$
|
|
\end_inset
|
|
|
|
to go from
|
|
\begin_inset Formula $p$
|
|
\end_inset
|
|
|
|
to
|
|
\begin_inset Formula $q$
|
|
\end_inset
|
|
|
|
:
|
|
\begin_inset Formula
|
|
\[
|
|
z=\log_{p}q=\frac{\theta}{\sin\theta}\left(q-p\cos\theta\right)p
|
|
\]
|
|
|
|
\end_inset
|
|
|
|
with
|
|
\begin_inset Formula $\theta=\cos^{-1}\left(p^{T}q\right)$
|
|
\end_inset
|
|
|
|
.
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
\begin_inset CommandInset bibtex
|
|
LatexCommand bibtex
|
|
bibfiles "../../../papers/refs"
|
|
options "plain"
|
|
|
|
\end_inset
|
|
|
|
|
|
\end_layout
|
|
|
|
\end_body
|
|
\end_document
|