gtsam/tests/testGaussianISAM2.cpp

1248 lines
44 KiB
C++

/**
* @file testGaussianISAM2.cpp
* @brief Unit tests for GaussianISAM2
* @author Michael Kaess
*/
#include <gtsam/base/debug.h>
#include <gtsam/base/TestableAssertions.h>
#include <gtsam/nonlinear/Ordering.h>
#include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/linear/GaussianSequentialSolver.h>
#include <gtsam/linear/GaussianBayesTree.h>
#include <gtsam/linear/JacobianFactorGraph.h>
#include <gtsam/nonlinear/ISAM2.h>
#include <tests/smallExample.h>
#include <gtsam/slam/planarSLAM.h>
#include <CppUnitLite/TestHarness.h>
#include <boost/foreach.hpp>
#include <boost/assign/std/list.hpp> // for operator +=
#include <boost/assign.hpp>
using namespace boost::assign;
using namespace std;
using namespace gtsam;
using boost::shared_ptr;
const double tol = 1e-4;
// SETDEBUG("ISAM2 update", true);
// SETDEBUG("ISAM2 update verbose", true);
// SETDEBUG("ISAM2 recalculate", true);
// Set up parameters
SharedDiagonal odoNoise = noiseModel::Diagonal::Sigmas(Vector_(3, 0.1, 0.1, M_PI/100.0));
SharedDiagonal brNoise = noiseModel::Diagonal::Sigmas(Vector_(2, M_PI/100.0, 0.1));
ISAM2 createSlamlikeISAM2(
boost::optional<Values&> init_values = boost::none,
boost::optional<planarSLAM::Graph&> full_graph = boost::none,
const ISAM2Params& params = ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false, true)) {
// These variables will be reused and accumulate factors and values
ISAM2 isam(params);
// ISAM2 isam(ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false, true));
Values fullinit;
planarSLAM::Graph fullgraph;
// i keeps track of the time step
size_t i = 0;
// Add a prior at time 0 and update isam
{
planarSLAM::Graph newfactors;
newfactors.addPrior(0, Pose2(0.0, 0.0, 0.0), odoNoise);
fullgraph.push_back(newfactors);
Values init;
init.insert((0), Pose2(0.01, 0.01, 0.01));
fullinit.insert((0), Pose2(0.01, 0.01, 0.01));
isam.update(newfactors, init);
}
// Add odometry from time 0 to time 5
for( ; i<5; ++i) {
planarSLAM::Graph newfactors;
newfactors.addOdometry(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
fullgraph.push_back(newfactors);
Values init;
init.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
fullinit.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
isam.update(newfactors, init);
}
// Add odometry from time 5 to 6 and landmark measurement at time 5
{
planarSLAM::Graph newfactors;
newfactors.addOdometry(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
newfactors.addBearingRange(i, 100, Rot2::fromAngle(M_PI/4.0), 5.0, brNoise);
newfactors.addBearingRange(i, 101, Rot2::fromAngle(-M_PI/4.0), 5.0, brNoise);
fullgraph.push_back(newfactors);
Values init;
init.insert((i+1), Pose2(1.01, 0.01, 0.01));
init.insert(100, Point2(5.0/sqrt(2.0), 5.0/sqrt(2.0)));
init.insert(101, Point2(5.0/sqrt(2.0), -5.0/sqrt(2.0)));
fullinit.insert((i+1), Pose2(1.01, 0.01, 0.01));
fullinit.insert(100, Point2(5.0/sqrt(2.0), 5.0/sqrt(2.0)));
fullinit.insert(101, Point2(5.0/sqrt(2.0), -5.0/sqrt(2.0)));
isam.update(newfactors, init);
++ i;
}
// Add odometry from time 6 to time 10
for( ; i<10; ++i) {
planarSLAM::Graph newfactors;
newfactors.addOdometry(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
fullgraph.push_back(newfactors);
Values init;
init.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
fullinit.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
isam.update(newfactors, init);
}
// Add odometry from time 10 to 11 and landmark measurement at time 10
{
planarSLAM::Graph newfactors;
newfactors.addOdometry(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
newfactors.addBearingRange(i, 100, Rot2::fromAngle(M_PI/4.0 + M_PI/16.0), 4.5, brNoise);
newfactors.addBearingRange(i, 101, Rot2::fromAngle(-M_PI/4.0 + M_PI/16.0), 4.5, brNoise);
fullgraph.push_back(newfactors);
Values init;
init.insert((i+1), Pose2(6.9, 0.1, 0.01));
fullinit.insert((i+1), Pose2(6.9, 0.1, 0.01));
isam.update(newfactors, init);
++ i;
}
if (full_graph)
*full_graph = fullgraph;
if (init_values)
*init_values = fullinit;
return isam;
}
/* ************************************************************************* */
TEST_UNSAFE(ISAM2, AddVariables) {
// Create initial state
Values theta;
theta.insert((0), Pose2(.1, .2, .3));
theta.insert(100, Point2(.4, .5));
Values newTheta;
newTheta.insert((1), Pose2(.6, .7, .8));
VectorValues deltaUnpermuted;
deltaUnpermuted.insert(0, Vector_(3, .1, .2, .3));
deltaUnpermuted.insert(1, Vector_(2, .4, .5));
Permutation permutation(2);
permutation[0] = 1;
permutation[1] = 0;
Permuted<VectorValues> delta(permutation, deltaUnpermuted);
VectorValues deltaNewtonUnpermuted;
deltaNewtonUnpermuted.insert(0, Vector_(3, .1, .2, .3));
deltaNewtonUnpermuted.insert(1, Vector_(2, .4, .5));
Permutation permutationNewton(2);
permutationNewton[0] = 1;
permutationNewton[1] = 0;
Permuted<VectorValues> deltaNewton(permutationNewton, deltaNewtonUnpermuted);
VectorValues deltaRgUnpermuted;
deltaRgUnpermuted.insert(0, Vector_(3, .1, .2, .3));
deltaRgUnpermuted.insert(1, Vector_(2, .4, .5));
Permutation permutationRg(2);
permutationRg[0] = 1;
permutationRg[1] = 0;
Permuted<VectorValues> deltaRg(permutationRg, deltaRgUnpermuted);
vector<bool> replacedKeys(2, false);
Ordering ordering; ordering += 100, (0);
ISAM2::Nodes nodes(2);
// Verify initial state
LONGS_EQUAL(0, ordering[100]);
LONGS_EQUAL(1, ordering[(0)]);
EXPECT(assert_equal(deltaUnpermuted[1], delta[ordering[100]]));
EXPECT(assert_equal(deltaUnpermuted[0], delta[ordering[(0)]]));
// Create expected state
Values thetaExpected;
thetaExpected.insert((0), Pose2(.1, .2, .3));
thetaExpected.insert(100, Point2(.4, .5));
thetaExpected.insert((1), Pose2(.6, .7, .8));
VectorValues deltaUnpermutedExpected;
deltaUnpermutedExpected.insert(0, Vector_(3, .1, .2, .3));
deltaUnpermutedExpected.insert(1, Vector_(2, .4, .5));
deltaUnpermutedExpected.insert(2, Vector_(3, 0.0, 0.0, 0.0));
Permutation permutationExpected(3);
permutationExpected[0] = 1;
permutationExpected[1] = 0;
permutationExpected[2] = 2;
Permuted<VectorValues> deltaExpected(permutationExpected, deltaUnpermutedExpected);
VectorValues deltaNewtonUnpermutedExpected;
deltaNewtonUnpermutedExpected.insert(0, Vector_(3, .1, .2, .3));
deltaNewtonUnpermutedExpected.insert(1, Vector_(2, .4, .5));
deltaNewtonUnpermutedExpected.insert(2, Vector_(3, 0.0, 0.0, 0.0));
Permutation permutationNewtonExpected(3);
permutationNewtonExpected[0] = 1;
permutationNewtonExpected[1] = 0;
permutationNewtonExpected[2] = 2;
Permuted<VectorValues> deltaNewtonExpected(permutationNewtonExpected, deltaNewtonUnpermutedExpected);
VectorValues deltaRgUnpermutedExpected;
deltaRgUnpermutedExpected.insert(0, Vector_(3, .1, .2, .3));
deltaRgUnpermutedExpected.insert(1, Vector_(2, .4, .5));
deltaRgUnpermutedExpected.insert(2, Vector_(3, 0.0, 0.0, 0.0));
Permutation permutationRgExpected(3);
permutationRgExpected[0] = 1;
permutationRgExpected[1] = 0;
permutationRgExpected[2] = 2;
Permuted<VectorValues> deltaRgExpected(permutationRgExpected, deltaRgUnpermutedExpected);
vector<bool> replacedKeysExpected(3, false);
Ordering orderingExpected; orderingExpected += 100, (0), (1);
ISAM2::Nodes nodesExpected(
3, ISAM2::sharedClique());
// Expand initial state
ISAM2::Impl::AddVariables(newTheta, theta, delta, deltaNewton, deltaRg, replacedKeys, ordering, nodes);
EXPECT(assert_equal(thetaExpected, theta));
EXPECT(assert_equal(deltaUnpermutedExpected, deltaUnpermuted));
EXPECT(assert_equal(deltaExpected.permutation(), delta.permutation()));
EXPECT(assert_equal(deltaNewtonUnpermutedExpected, deltaNewtonUnpermuted));
EXPECT(assert_equal(deltaNewtonExpected.permutation(), deltaNewton.permutation()));
EXPECT(assert_equal(deltaRgUnpermutedExpected, deltaRgUnpermuted));
EXPECT(assert_equal(deltaRgExpected.permutation(), deltaRg.permutation()));
EXPECT(assert_container_equality(replacedKeysExpected, replacedKeys));
EXPECT(assert_equal(orderingExpected, ordering));
}
/* ************************************************************************* */
//TEST(ISAM2, IndicesFromFactors) {
//
// using namespace gtsam::planarSLAM;
// typedef GaussianISAM2<Values>::Impl Impl;
//
// Ordering ordering; ordering += (0), (0), (1);
// planarSLAM::Graph graph;
// graph.addPrior((0), Pose2(), noiseModel::Unit::Create(Pose2::dimension));
// graph.addRange((0), (0), 1.0, noiseModel::Unit::Create(1));
//
// FastSet<Index> expected;
// expected.insert(0);
// expected.insert(1);
//
// FastSet<Index> actual = Impl::IndicesFromFactors(ordering, graph);
//
// EXPECT(assert_equal(expected, actual));
//}
/* ************************************************************************* */
//TEST(ISAM2, CheckRelinearization) {
//
// typedef GaussianISAM2<Values>::Impl Impl;
//
// // Create values where indices 1 and 3 are above the threshold of 0.1
// VectorValues values;
// values.reserve(4, 10);
// values.push_back_preallocated(Vector_(2, 0.09, 0.09));
// values.push_back_preallocated(Vector_(3, 0.11, 0.11, 0.09));
// values.push_back_preallocated(Vector_(3, 0.09, 0.09, 0.09));
// values.push_back_preallocated(Vector_(2, 0.11, 0.11));
//
// // Create a permutation
// Permutation permutation(4);
// permutation[0] = 2;
// permutation[1] = 0;
// permutation[2] = 1;
// permutation[3] = 3;
//
// Permuted<VectorValues> permuted(permutation, values);
//
// // After permutation, the indices above the threshold are 2 and 2
// FastSet<Index> expected;
// expected.insert(2);
// expected.insert(3);
//
// // Indices checked by CheckRelinearization
// FastSet<Index> actual = Impl::CheckRelinearization(permuted, 0.1);
//
// EXPECT(assert_equal(expected, actual));
//}
/* ************************************************************************* */
TEST(ISAM2, optimize2) {
// Create initialization
Values theta;
theta.insert((0), Pose2(0.01, 0.01, 0.01));
// Create conditional
Vector d(3); d << -0.1, -0.1, -0.31831;
Matrix R(3,3); R <<
10, 0.0, 0.0,
0.0, 10, 0.0,
0.0, 0.0, 31.8309886;
GaussianConditional::shared_ptr conditional(new GaussianConditional(0, d, R, Vector::Ones(3)));
// Create ordering
Ordering ordering; ordering += (0);
// Expected vector
VectorValues expected(1, 3);
conditional->solveInPlace(expected);
// Clique
ISAM2::sharedClique clique(
ISAM2::Clique::Create(make_pair(conditional,GaussianFactor::shared_ptr())));
VectorValues actual(theta.dims(ordering));
internal::optimizeInPlace<ISAM2::Base>(clique, actual);
// expected.print("expected: ");
// actual.print("actual: ");
EXPECT(assert_equal(expected, actual));
}
/* ************************************************************************* */
bool isam_check(const planarSLAM::Graph& fullgraph, const Values& fullinit, const ISAM2& isam) {
Values actual = isam.calculateEstimate();
Ordering ordering = isam.getOrdering(); // *fullgraph.orderingCOLAMD(fullinit).first;
GaussianFactorGraph linearized = *fullgraph.linearize(fullinit, ordering);
// linearized.print("Expected linearized: ");
GaussianBayesNet gbn = *GaussianSequentialSolver(linearized).eliminate();
// gbn.print("Expected bayesnet: ");
VectorValues delta = optimize(gbn);
Values expected = fullinit.retract(delta, ordering);
return assert_equal(expected, actual);
}
/* ************************************************************************* */
TEST(ISAM2, slamlike_solution_gaussnewton)
{
// These variables will be reused and accumulate factors and values
ISAM2 isam(ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false));
Values fullinit;
planarSLAM::Graph fullgraph;
// i keeps track of the time step
size_t i = 0;
// Add a prior at time 0 and update isam
{
planarSLAM::Graph newfactors;
newfactors.addPrior(0, Pose2(0.0, 0.0, 0.0), odoNoise);
fullgraph.push_back(newfactors);
Values init;
init.insert((0), Pose2(0.01, 0.01, 0.01));
fullinit.insert((0), Pose2(0.01, 0.01, 0.01));
isam.update(newfactors, init);
}
CHECK(isam_check(fullgraph, fullinit, isam));
// Add odometry from time 0 to time 5
for( ; i<5; ++i) {
planarSLAM::Graph newfactors;
newfactors.addOdometry(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
fullgraph.push_back(newfactors);
Values init;
init.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
fullinit.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
isam.update(newfactors, init);
}
// Add odometry from time 5 to 6 and landmark measurement at time 5
{
planarSLAM::Graph newfactors;
newfactors.addOdometry(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
newfactors.addBearingRange(i, 100, Rot2::fromAngle(M_PI/4.0), 5.0, brNoise);
newfactors.addBearingRange(i, 101, Rot2::fromAngle(-M_PI/4.0), 5.0, brNoise);
fullgraph.push_back(newfactors);
Values init;
init.insert((i+1), Pose2(1.01, 0.01, 0.01));
init.insert(100, Point2(5.0/sqrt(2.0), 5.0/sqrt(2.0)));
init.insert(101, Point2(5.0/sqrt(2.0), -5.0/sqrt(2.0)));
fullinit.insert((i+1), Pose2(1.01, 0.01, 0.01));
fullinit.insert(100, Point2(5.0/sqrt(2.0), 5.0/sqrt(2.0)));
fullinit.insert(101, Point2(5.0/sqrt(2.0), -5.0/sqrt(2.0)));
isam.update(newfactors, init);
++ i;
}
// Add odometry from time 6 to time 10
for( ; i<10; ++i) {
planarSLAM::Graph newfactors;
newfactors.addOdometry(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
fullgraph.push_back(newfactors);
Values init;
init.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
fullinit.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
isam.update(newfactors, init);
}
// Add odometry from time 10 to 11 and landmark measurement at time 10
{
planarSLAM::Graph newfactors;
newfactors.addOdometry(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
newfactors.addBearingRange(i, 100, Rot2::fromAngle(M_PI/4.0 + M_PI/16.0), 4.5, brNoise);
newfactors.addBearingRange(i, 101, Rot2::fromAngle(-M_PI/4.0 + M_PI/16.0), 4.5, brNoise);
fullgraph.push_back(newfactors);
Values init;
init.insert((i+1), Pose2(6.9, 0.1, 0.01));
fullinit.insert((i+1), Pose2(6.9, 0.1, 0.01));
isam.update(newfactors, init);
++ i;
}
// Compare solutions
CHECK(isam_check(fullgraph, fullinit, isam));
// Check gradient at each node
typedef ISAM2::sharedClique sharedClique;
BOOST_FOREACH(const sharedClique& clique, isam.nodes()) {
// Compute expected gradient
FactorGraph<JacobianFactor> jfg;
jfg.push_back(JacobianFactor::shared_ptr(new JacobianFactor(*clique->conditional())));
VectorValues expectedGradient(*allocateVectorValues(isam));
gradientAtZero(jfg, expectedGradient);
// Compare with actual gradients
int variablePosition = 0;
for(GaussianConditional::const_iterator jit = clique->conditional()->begin(); jit != clique->conditional()->end(); ++jit) {
const int dim = clique->conditional()->dim(jit);
Vector actual = clique->gradientContribution().segment(variablePosition, dim);
EXPECT(assert_equal(expectedGradient[*jit], actual));
variablePosition += dim;
}
LONGS_EQUAL(clique->gradientContribution().rows(), variablePosition);
}
// Check gradient
VectorValues expectedGradient(*allocateVectorValues(isam));
gradientAtZero(FactorGraph<JacobianFactor>(isam), expectedGradient);
VectorValues expectedGradient2(gradient(FactorGraph<JacobianFactor>(isam), VectorValues::Zero(expectedGradient)));
VectorValues actualGradient(*allocateVectorValues(isam));
gradientAtZero(isam, actualGradient);
EXPECT(assert_equal(expectedGradient2, expectedGradient));
EXPECT(assert_equal(expectedGradient, actualGradient));
}
/* ************************************************************************* */
TEST(ISAM2, slamlike_solution_dogleg)
{
// These variables will be reused and accumulate factors and values
ISAM2 isam(ISAM2Params(ISAM2DoglegParams(1.0), 0.0, 0, false));
Values fullinit;
planarSLAM::Graph fullgraph;
// i keeps track of the time step
size_t i = 0;
// Add a prior at time 0 and update isam
{
planarSLAM::Graph newfactors;
newfactors.addPrior(0, Pose2(0.0, 0.0, 0.0), odoNoise);
fullgraph.push_back(newfactors);
Values init;
init.insert((0), Pose2(0.01, 0.01, 0.01));
fullinit.insert((0), Pose2(0.01, 0.01, 0.01));
isam.update(newfactors, init);
}
CHECK(isam_check(fullgraph, fullinit, isam));
// Add odometry from time 0 to time 5
for( ; i<5; ++i) {
planarSLAM::Graph newfactors;
newfactors.addOdometry(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
fullgraph.push_back(newfactors);
Values init;
init.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
fullinit.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
isam.update(newfactors, init);
}
// Add odometry from time 5 to 6 and landmark measurement at time 5
{
planarSLAM::Graph newfactors;
newfactors.addOdometry(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
newfactors.addBearingRange(i, 100, Rot2::fromAngle(M_PI/4.0), 5.0, brNoise);
newfactors.addBearingRange(i, 101, Rot2::fromAngle(-M_PI/4.0), 5.0, brNoise);
fullgraph.push_back(newfactors);
Values init;
init.insert((i+1), Pose2(1.01, 0.01, 0.01));
init.insert(100, Point2(5.0/sqrt(2.0), 5.0/sqrt(2.0)));
init.insert(101, Point2(5.0/sqrt(2.0), -5.0/sqrt(2.0)));
fullinit.insert((i+1), Pose2(1.01, 0.01, 0.01));
fullinit.insert(100, Point2(5.0/sqrt(2.0), 5.0/sqrt(2.0)));
fullinit.insert(101, Point2(5.0/sqrt(2.0), -5.0/sqrt(2.0)));
isam.update(newfactors, init);
++ i;
}
// Add odometry from time 6 to time 10
for( ; i<10; ++i) {
planarSLAM::Graph newfactors;
newfactors.addOdometry(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
fullgraph.push_back(newfactors);
Values init;
init.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
fullinit.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
isam.update(newfactors, init);
}
// Add odometry from time 10 to 11 and landmark measurement at time 10
{
planarSLAM::Graph newfactors;
newfactors.addOdometry(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
newfactors.addBearingRange(i, 100, Rot2::fromAngle(M_PI/4.0 + M_PI/16.0), 4.5, brNoise);
newfactors.addBearingRange(i, 101, Rot2::fromAngle(-M_PI/4.0 + M_PI/16.0), 4.5, brNoise);
fullgraph.push_back(newfactors);
Values init;
init.insert((i+1), Pose2(6.9, 0.1, 0.01));
fullinit.insert((i+1), Pose2(6.9, 0.1, 0.01));
isam.update(newfactors, init);
++ i;
}
// Compare solutions
CHECK(isam_check(fullgraph, fullinit, isam));
// Check gradient at each node
typedef ISAM2::sharedClique sharedClique;
BOOST_FOREACH(const sharedClique& clique, isam.nodes()) {
// Compute expected gradient
FactorGraph<JacobianFactor> jfg;
jfg.push_back(JacobianFactor::shared_ptr(new JacobianFactor(*clique->conditional())));
VectorValues expectedGradient(*allocateVectorValues(isam));
gradientAtZero(jfg, expectedGradient);
// Compare with actual gradients
int variablePosition = 0;
for(GaussianConditional::const_iterator jit = clique->conditional()->begin(); jit != clique->conditional()->end(); ++jit) {
const int dim = clique->conditional()->dim(jit);
Vector actual = clique->gradientContribution().segment(variablePosition, dim);
EXPECT(assert_equal(expectedGradient[*jit], actual));
variablePosition += dim;
}
LONGS_EQUAL(clique->gradientContribution().rows(), variablePosition);
}
// Check gradient
VectorValues expectedGradient(*allocateVectorValues(isam));
gradientAtZero(FactorGraph<JacobianFactor>(isam), expectedGradient);
VectorValues expectedGradient2(gradient(FactorGraph<JacobianFactor>(isam), VectorValues::Zero(expectedGradient)));
VectorValues actualGradient(*allocateVectorValues(isam));
gradientAtZero(isam, actualGradient);
EXPECT(assert_equal(expectedGradient2, expectedGradient));
EXPECT(assert_equal(expectedGradient, actualGradient));
}
/* ************************************************************************* */
TEST(ISAM2, slamlike_solution_gaussnewton_qr)
{
// These variables will be reused and accumulate factors and values
ISAM2 isam(ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false, false, ISAM2Params::QR));
Values fullinit;
planarSLAM::Graph fullgraph;
// i keeps track of the time step
size_t i = 0;
// Add a prior at time 0 and update isam
{
planarSLAM::Graph newfactors;
newfactors.addPrior(0, Pose2(0.0, 0.0, 0.0), odoNoise);
fullgraph.push_back(newfactors);
Values init;
init.insert((0), Pose2(0.01, 0.01, 0.01));
fullinit.insert((0), Pose2(0.01, 0.01, 0.01));
isam.update(newfactors, init);
}
CHECK(isam_check(fullgraph, fullinit, isam));
// Add odometry from time 0 to time 5
for( ; i<5; ++i) {
planarSLAM::Graph newfactors;
newfactors.addOdometry(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
fullgraph.push_back(newfactors);
Values init;
init.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
fullinit.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
isam.update(newfactors, init);
}
// Add odometry from time 5 to 6 and landmark measurement at time 5
{
planarSLAM::Graph newfactors;
newfactors.addOdometry(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
newfactors.addBearingRange(i, 100, Rot2::fromAngle(M_PI/4.0), 5.0, brNoise);
newfactors.addBearingRange(i, 101, Rot2::fromAngle(-M_PI/4.0), 5.0, brNoise);
fullgraph.push_back(newfactors);
Values init;
init.insert((i+1), Pose2(1.01, 0.01, 0.01));
init.insert(100, Point2(5.0/sqrt(2.0), 5.0/sqrt(2.0)));
init.insert(101, Point2(5.0/sqrt(2.0), -5.0/sqrt(2.0)));
fullinit.insert((i+1), Pose2(1.01, 0.01, 0.01));
fullinit.insert(100, Point2(5.0/sqrt(2.0), 5.0/sqrt(2.0)));
fullinit.insert(101, Point2(5.0/sqrt(2.0), -5.0/sqrt(2.0)));
isam.update(newfactors, init);
++ i;
}
// Add odometry from time 6 to time 10
for( ; i<10; ++i) {
planarSLAM::Graph newfactors;
newfactors.addOdometry(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
fullgraph.push_back(newfactors);
Values init;
init.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
fullinit.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
isam.update(newfactors, init);
}
// Add odometry from time 10 to 11 and landmark measurement at time 10
{
planarSLAM::Graph newfactors;
newfactors.addOdometry(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
newfactors.addBearingRange(i, 100, Rot2::fromAngle(M_PI/4.0 + M_PI/16.0), 4.5, brNoise);
newfactors.addBearingRange(i, 101, Rot2::fromAngle(-M_PI/4.0 + M_PI/16.0), 4.5, brNoise);
fullgraph.push_back(newfactors);
Values init;
init.insert((i+1), Pose2(6.9, 0.1, 0.01));
fullinit.insert((i+1), Pose2(6.9, 0.1, 0.01));
isam.update(newfactors, init);
++ i;
}
// Compare solutions
CHECK(isam_check(fullgraph, fullinit, isam));
// Check gradient at each node
typedef ISAM2::sharedClique sharedClique;
BOOST_FOREACH(const sharedClique& clique, isam.nodes()) {
// Compute expected gradient
FactorGraph<JacobianFactor> jfg;
jfg.push_back(JacobianFactor::shared_ptr(new JacobianFactor(*clique->conditional())));
VectorValues expectedGradient(*allocateVectorValues(isam));
gradientAtZero(jfg, expectedGradient);
// Compare with actual gradients
int variablePosition = 0;
for(GaussianConditional::const_iterator jit = clique->conditional()->begin(); jit != clique->conditional()->end(); ++jit) {
const int dim = clique->conditional()->dim(jit);
Vector actual = clique->gradientContribution().segment(variablePosition, dim);
EXPECT(assert_equal(expectedGradient[*jit], actual));
variablePosition += dim;
}
LONGS_EQUAL(clique->gradientContribution().rows(), variablePosition);
}
// Check gradient
VectorValues expectedGradient(*allocateVectorValues(isam));
gradientAtZero(FactorGraph<JacobianFactor>(isam), expectedGradient);
VectorValues expectedGradient2(gradient(FactorGraph<JacobianFactor>(isam), VectorValues::Zero(expectedGradient)));
VectorValues actualGradient(*allocateVectorValues(isam));
gradientAtZero(isam, actualGradient);
EXPECT(assert_equal(expectedGradient2, expectedGradient));
EXPECT(assert_equal(expectedGradient, actualGradient));
}
/* ************************************************************************* */
TEST(ISAM2, slamlike_solution_dogleg_qr)
{
// These variables will be reused and accumulate factors and values
ISAM2 isam(ISAM2Params(ISAM2DoglegParams(1.0), 0.0, 0, false, false, ISAM2Params::QR));
Values fullinit;
planarSLAM::Graph fullgraph;
// i keeps track of the time step
size_t i = 0;
// Add a prior at time 0 and update isam
{
planarSLAM::Graph newfactors;
newfactors.addPrior(0, Pose2(0.0, 0.0, 0.0), odoNoise);
fullgraph.push_back(newfactors);
Values init;
init.insert((0), Pose2(0.01, 0.01, 0.01));
fullinit.insert((0), Pose2(0.01, 0.01, 0.01));
isam.update(newfactors, init);
}
CHECK(isam_check(fullgraph, fullinit, isam));
// Add odometry from time 0 to time 5
for( ; i<5; ++i) {
planarSLAM::Graph newfactors;
newfactors.addOdometry(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
fullgraph.push_back(newfactors);
Values init;
init.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
fullinit.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
isam.update(newfactors, init);
}
// Add odometry from time 5 to 6 and landmark measurement at time 5
{
planarSLAM::Graph newfactors;
newfactors.addOdometry(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
newfactors.addBearingRange(i, 100, Rot2::fromAngle(M_PI/4.0), 5.0, brNoise);
newfactors.addBearingRange(i, 101, Rot2::fromAngle(-M_PI/4.0), 5.0, brNoise);
fullgraph.push_back(newfactors);
Values init;
init.insert((i+1), Pose2(1.01, 0.01, 0.01));
init.insert(100, Point2(5.0/sqrt(2.0), 5.0/sqrt(2.0)));
init.insert(101, Point2(5.0/sqrt(2.0), -5.0/sqrt(2.0)));
fullinit.insert((i+1), Pose2(1.01, 0.01, 0.01));
fullinit.insert(100, Point2(5.0/sqrt(2.0), 5.0/sqrt(2.0)));
fullinit.insert(101, Point2(5.0/sqrt(2.0), -5.0/sqrt(2.0)));
isam.update(newfactors, init);
++ i;
}
// Add odometry from time 6 to time 10
for( ; i<10; ++i) {
planarSLAM::Graph newfactors;
newfactors.addOdometry(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
fullgraph.push_back(newfactors);
Values init;
init.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
fullinit.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
isam.update(newfactors, init);
}
// Add odometry from time 10 to 11 and landmark measurement at time 10
{
planarSLAM::Graph newfactors;
newfactors.addOdometry(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
newfactors.addBearingRange(i, 100, Rot2::fromAngle(M_PI/4.0 + M_PI/16.0), 4.5, brNoise);
newfactors.addBearingRange(i, 101, Rot2::fromAngle(-M_PI/4.0 + M_PI/16.0), 4.5, brNoise);
fullgraph.push_back(newfactors);
Values init;
init.insert((i+1), Pose2(6.9, 0.1, 0.01));
fullinit.insert((i+1), Pose2(6.9, 0.1, 0.01));
isam.update(newfactors, init);
++ i;
}
// Compare solutions
CHECK(isam_check(fullgraph, fullinit, isam));
// Check gradient at each node
typedef ISAM2::sharedClique sharedClique;
BOOST_FOREACH(const sharedClique& clique, isam.nodes()) {
// Compute expected gradient
FactorGraph<JacobianFactor> jfg;
jfg.push_back(JacobianFactor::shared_ptr(new JacobianFactor(*clique->conditional())));
VectorValues expectedGradient(*allocateVectorValues(isam));
gradientAtZero(jfg, expectedGradient);
// Compare with actual gradients
int variablePosition = 0;
for(GaussianConditional::const_iterator jit = clique->conditional()->begin(); jit != clique->conditional()->end(); ++jit) {
const int dim = clique->conditional()->dim(jit);
Vector actual = clique->gradientContribution().segment(variablePosition, dim);
EXPECT(assert_equal(expectedGradient[*jit], actual));
variablePosition += dim;
}
LONGS_EQUAL(clique->gradientContribution().rows(), variablePosition);
}
// Check gradient
VectorValues expectedGradient(*allocateVectorValues(isam));
gradientAtZero(FactorGraph<JacobianFactor>(isam), expectedGradient);
VectorValues expectedGradient2(gradient(FactorGraph<JacobianFactor>(isam), VectorValues::Zero(expectedGradient)));
VectorValues actualGradient(*allocateVectorValues(isam));
gradientAtZero(isam, actualGradient);
EXPECT(assert_equal(expectedGradient2, expectedGradient));
EXPECT(assert_equal(expectedGradient, actualGradient));
}
/* ************************************************************************* */
TEST(ISAM2, clone) {
ISAM2 clone1;
{
ISAM2 isam = createSlamlikeISAM2();
clone1 = isam;
ISAM2 clone2(isam);
// Modify original isam
NonlinearFactorGraph factors;
factors.add(BetweenFactor<Pose2>(0, 10,
isam.calculateEstimate<Pose2>(0).between(isam.calculateEstimate<Pose2>(10)), noiseModel::Unit::Create(3)));
isam.update(factors);
CHECK(assert_equal(createSlamlikeISAM2(), clone2));
}
// This is to (perhaps unsuccessfully) try to currupt unallocated memory referenced
// if the references in the iSAM2 copy point to the old instance which deleted at
// the end of the {...} section above.
ISAM2 temp = createSlamlikeISAM2();
CHECK(assert_equal(createSlamlikeISAM2(), clone1));
CHECK(assert_equal(clone1, temp));
// Check clone empty
ISAM2 isam;
clone1 = isam;
CHECK(assert_equal(ISAM2(), clone1));
}
/* ************************************************************************* */
TEST(ISAM2, permute_cached) {
typedef boost::shared_ptr<ISAM2Clique> sharedISAM2Clique;
// Construct expected permuted BayesTree (variable 2 has been changed to 1)
BayesTree<GaussianConditional, ISAM2Clique> expected;
expected.insert(sharedISAM2Clique(new ISAM2Clique(make_pair(
boost::make_shared<GaussianConditional>(pair_list_of
(3, Matrix_(1,1,1.0))
(4, Matrix_(1,1,2.0)),
2, Vector_(1,1.0), Vector_(1,1.0)), // p(3,4)
HessianFactor::shared_ptr())))); // Cached: empty
expected.insert(sharedISAM2Clique(new ISAM2Clique(make_pair(
boost::make_shared<GaussianConditional>(pair_list_of
(2, Matrix_(1,1,1.0))
(3, Matrix_(1,1,2.0)),
1, Vector_(1,1.0), Vector_(1,1.0)), // p(2|3)
boost::make_shared<HessianFactor>(3, Matrix_(1,1,1.0), Vector_(1,1.0), 0.0))))); // Cached: p(3)
expected.insert(sharedISAM2Clique(new ISAM2Clique(make_pair(
boost::make_shared<GaussianConditional>(pair_list_of
(0, Matrix_(1,1,1.0))
(2, Matrix_(1,1,2.0)),
1, Vector_(1,1.0), Vector_(1,1.0)), // p(0|2)
boost::make_shared<HessianFactor>(1, Matrix_(1,1,1.0), Vector_(1,1.0), 0.0))))); // Cached: p(1)
// Change variable 2 to 1
expected.root()->children().front()->conditional()->keys()[0] = 1;
expected.root()->children().front()->children().front()->conditional()->keys()[1] = 1;
// Construct unpermuted BayesTree
BayesTree<GaussianConditional, ISAM2Clique> actual;
actual.insert(sharedISAM2Clique(new ISAM2Clique(make_pair(
boost::make_shared<GaussianConditional>(pair_list_of
(3, Matrix_(1,1,1.0))
(4, Matrix_(1,1,2.0)),
2, Vector_(1,1.0), Vector_(1,1.0)), // p(3,4)
HessianFactor::shared_ptr())))); // Cached: empty
actual.insert(sharedISAM2Clique(new ISAM2Clique(make_pair(
boost::make_shared<GaussianConditional>(pair_list_of
(2, Matrix_(1,1,1.0))
(3, Matrix_(1,1,2.0)),
1, Vector_(1,1.0), Vector_(1,1.0)), // p(2|3)
boost::make_shared<HessianFactor>(3, Matrix_(1,1,1.0), Vector_(1,1.0), 0.0))))); // Cached: p(3)
actual.insert(sharedISAM2Clique(new ISAM2Clique(make_pair(
boost::make_shared<GaussianConditional>(pair_list_of
(0, Matrix_(1,1,1.0))
(2, Matrix_(1,1,2.0)),
1, Vector_(1,1.0), Vector_(1,1.0)), // p(0|2)
boost::make_shared<HessianFactor>(2, Matrix_(1,1,1.0), Vector_(1,1.0), 0.0))))); // Cached: p(2)
// Create permutation that changes variable 2 -> 0
Permutation permutation = Permutation::Identity(5);
permutation[2] = 1;
// Permute BayesTree
actual.root()->permuteWithInverse(permutation);
// Check
EXPECT(assert_equal(expected, actual));
}
/* ************************************************************************* */
TEST(ISAM2, removeFactors)
{
// This test builds a graph in the same way as the "slamlike" test above, but
// then removes the 2nd-to-last landmark measurement
// These variables will be reused and accumulate factors and values
ISAM2 isam(ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false));
Values fullinit;
planarSLAM::Graph fullgraph;
// i keeps track of the time step
size_t i = 0;
// Add a prior at time 0 and update isam
{
planarSLAM::Graph newfactors;
newfactors.addPrior(0, Pose2(0.0, 0.0, 0.0), odoNoise);
fullgraph.push_back(newfactors);
Values init;
init.insert((0), Pose2(0.01, 0.01, 0.01));
fullinit.insert((0), Pose2(0.01, 0.01, 0.01));
isam.update(newfactors, init);
}
CHECK(isam_check(fullgraph, fullinit, isam));
// Add odometry from time 0 to time 5
for( ; i<5; ++i) {
planarSLAM::Graph newfactors;
newfactors.addOdometry(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
fullgraph.push_back(newfactors);
Values init;
init.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
fullinit.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
isam.update(newfactors, init);
}
// Add odometry from time 5 to 6 and landmark measurement at time 5
{
planarSLAM::Graph newfactors;
newfactors.addOdometry(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
newfactors.addBearingRange(i, 100, Rot2::fromAngle(M_PI/4.0), 5.0, brNoise);
newfactors.addBearingRange(i, 101, Rot2::fromAngle(-M_PI/4.0), 5.0, brNoise);
fullgraph.push_back(newfactors);
Values init;
init.insert((i+1), Pose2(1.01, 0.01, 0.01));
init.insert(100, Point2(5.0/sqrt(2.0), 5.0/sqrt(2.0)));
init.insert(101, Point2(5.0/sqrt(2.0), -5.0/sqrt(2.0)));
fullinit.insert((i+1), Pose2(1.01, 0.01, 0.01));
fullinit.insert(100, Point2(5.0/sqrt(2.0), 5.0/sqrt(2.0)));
fullinit.insert(101, Point2(5.0/sqrt(2.0), -5.0/sqrt(2.0)));
isam.update(newfactors, init);
++ i;
}
// Add odometry from time 6 to time 10
for( ; i<10; ++i) {
planarSLAM::Graph newfactors;
newfactors.addOdometry(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
fullgraph.push_back(newfactors);
Values init;
init.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
fullinit.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
isam.update(newfactors, init);
}
// Add odometry from time 10 to 11 and landmark measurement at time 10
{
planarSLAM::Graph newfactors;
newfactors.addOdometry(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
newfactors.addBearingRange(i, 100, Rot2::fromAngle(M_PI/4.0 + M_PI/16.0), 4.5, brNoise);
newfactors.addBearingRange(i, 101, Rot2::fromAngle(-M_PI/4.0 + M_PI/16.0), 4.5, brNoise);
fullgraph.push_back(newfactors[0]);
fullgraph.push_back(newfactors[2]); // Don't add measurement on landmark 0
Values init;
init.insert((i+1), Pose2(6.9, 0.1, 0.01));
fullinit.insert((i+1), Pose2(6.9, 0.1, 0.01));
ISAM2Result result = isam.update(newfactors, init);
++ i;
// Remove the measurement on landmark 0
FastVector<size_t> toRemove;
EXPECT_LONGS_EQUAL(isam.getFactorsUnsafe().size()-2, result.newFactorsIndices[1]);
toRemove.push_back(result.newFactorsIndices[1]);
isam.update(planarSLAM::Graph(), Values(), toRemove);
}
// Compare solutions
CHECK(isam_check(fullgraph, fullinit, isam));
// Check gradient at each node
typedef ISAM2::sharedClique sharedClique;
BOOST_FOREACH(const sharedClique& clique, isam.nodes()) {
// Compute expected gradient
FactorGraph<JacobianFactor> jfg;
jfg.push_back(JacobianFactor::shared_ptr(new JacobianFactor(*clique->conditional())));
VectorValues expectedGradient(*allocateVectorValues(isam));
gradientAtZero(jfg, expectedGradient);
// Compare with actual gradients
int variablePosition = 0;
for(GaussianConditional::const_iterator jit = clique->conditional()->begin(); jit != clique->conditional()->end(); ++jit) {
const int dim = clique->conditional()->dim(jit);
Vector actual = clique->gradientContribution().segment(variablePosition, dim);
EXPECT(assert_equal(expectedGradient[*jit], actual));
variablePosition += dim;
}
LONGS_EQUAL(clique->gradientContribution().rows(), variablePosition);
}
// Check gradient
VectorValues expectedGradient(*allocateVectorValues(isam));
gradientAtZero(FactorGraph<JacobianFactor>(isam), expectedGradient);
VectorValues expectedGradient2(gradient(FactorGraph<JacobianFactor>(isam), VectorValues::Zero(expectedGradient)));
VectorValues actualGradient(*allocateVectorValues(isam));
gradientAtZero(isam, actualGradient);
EXPECT(assert_equal(expectedGradient2, expectedGradient));
EXPECT(assert_equal(expectedGradient, actualGradient));
}
/* ************************************************************************* */
TEST_UNSAFE(ISAM2, swapFactors)
{
// This test builds a graph in the same way as the "slamlike" test above, but
// then swaps the 2nd-to-last landmark measurement with a different one
Values fullinit;
planarSLAM::Graph fullgraph;
ISAM2 isam = createSlamlikeISAM2(fullinit, fullgraph);
// Remove the measurement on landmark 0 and replace with a different one
{
size_t swap_idx = isam.getFactorsUnsafe().size()-2;
FastVector<size_t> toRemove;
toRemove.push_back(swap_idx);
fullgraph.remove(swap_idx);
planarSLAM::Graph swapfactors;
// swapfactors.addBearingRange(10, 100, Rot2::fromAngle(M_PI/4.0 + M_PI/16.0), 4.5, brNoise); // original factor
swapfactors.addBearingRange(10, 100, Rot2::fromAngle(M_PI/4.0 + M_PI/16.0), 5.0, brNoise);
fullgraph.push_back(swapfactors);
isam.update(swapfactors, Values(), toRemove);
}
// Compare solutions
EXPECT(assert_equal(fullgraph, planarSLAM::Graph(isam.getFactorsUnsafe())));
EXPECT(isam_check(fullgraph, fullinit, isam));
// Check gradient at each node
typedef ISAM2::sharedClique sharedClique;
BOOST_FOREACH(const sharedClique& clique, isam.nodes()) {
// Compute expected gradient
FactorGraph<JacobianFactor> jfg;
jfg.push_back(JacobianFactor::shared_ptr(new JacobianFactor(*clique->conditional())));
VectorValues expectedGradient(*allocateVectorValues(isam));
gradientAtZero(jfg, expectedGradient);
// Compare with actual gradients
int variablePosition = 0;
for(GaussianConditional::const_iterator jit = clique->conditional()->begin(); jit != clique->conditional()->end(); ++jit) {
const int dim = clique->conditional()->dim(jit);
Vector actual = clique->gradientContribution().segment(variablePosition, dim);
EXPECT(assert_equal(expectedGradient[*jit], actual));
variablePosition += dim;
}
EXPECT_LONGS_EQUAL(clique->gradientContribution().rows(), variablePosition);
}
// Check gradient
VectorValues expectedGradient(*allocateVectorValues(isam));
gradientAtZero(FactorGraph<JacobianFactor>(isam), expectedGradient);
VectorValues expectedGradient2(gradient(FactorGraph<JacobianFactor>(isam), VectorValues::Zero(expectedGradient)));
VectorValues actualGradient(*allocateVectorValues(isam));
gradientAtZero(isam, actualGradient);
EXPECT(assert_equal(expectedGradient2, expectedGradient));
EXPECT(assert_equal(expectedGradient, actualGradient));
}
/* ************************************************************************* */
TEST(ISAM2, constrained_ordering)
{
// These variables will be reused and accumulate factors and values
ISAM2 isam(ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false));
Values fullinit;
planarSLAM::Graph fullgraph;
// We will constrain x3 and x4 to the end
FastMap<Key, int> constrained;
constrained.insert(make_pair((3), 1));
constrained.insert(make_pair((4), 2));
// i keeps track of the time step
size_t i = 0;
// Add a prior at time 0 and update isam
{
planarSLAM::Graph newfactors;
newfactors.addPrior(0, Pose2(0.0, 0.0, 0.0), odoNoise);
fullgraph.push_back(newfactors);
Values init;
init.insert((0), Pose2(0.01, 0.01, 0.01));
fullinit.insert((0), Pose2(0.01, 0.01, 0.01));
isam.update(newfactors, init);
}
CHECK(isam_check(fullgraph, fullinit, isam));
// Add odometry from time 0 to time 5
for( ; i<5; ++i) {
planarSLAM::Graph newfactors;
newfactors.addOdometry(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
fullgraph.push_back(newfactors);
Values init;
init.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
fullinit.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
if(i >= 3)
isam.update(newfactors, init, FastVector<size_t>(), constrained);
else
isam.update(newfactors, init);
}
// Add odometry from time 5 to 6 and landmark measurement at time 5
{
planarSLAM::Graph newfactors;
newfactors.addOdometry(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
newfactors.addBearingRange(i, 100, Rot2::fromAngle(M_PI/4.0), 5.0, brNoise);
newfactors.addBearingRange(i, 101, Rot2::fromAngle(-M_PI/4.0), 5.0, brNoise);
fullgraph.push_back(newfactors);
Values init;
init.insert((i+1), Pose2(1.01, 0.01, 0.01));
init.insert(100, Point2(5.0/sqrt(2.0), 5.0/sqrt(2.0)));
init.insert(101, Point2(5.0/sqrt(2.0), -5.0/sqrt(2.0)));
fullinit.insert((i+1), Pose2(1.01, 0.01, 0.01));
fullinit.insert(100, Point2(5.0/sqrt(2.0), 5.0/sqrt(2.0)));
fullinit.insert(101, Point2(5.0/sqrt(2.0), -5.0/sqrt(2.0)));
isam.update(newfactors, init, FastVector<size_t>(), constrained);
++ i;
}
// Add odometry from time 6 to time 10
for( ; i<10; ++i) {
planarSLAM::Graph newfactors;
newfactors.addOdometry(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
fullgraph.push_back(newfactors);
Values init;
init.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
fullinit.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
isam.update(newfactors, init, FastVector<size_t>(), constrained);
}
// Add odometry from time 10 to 11 and landmark measurement at time 10
{
planarSLAM::Graph newfactors;
newfactors.addOdometry(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
newfactors.addBearingRange(i, 100, Rot2::fromAngle(M_PI/4.0 + M_PI/16.0), 4.5, brNoise);
newfactors.addBearingRange(i, 101, Rot2::fromAngle(-M_PI/4.0 + M_PI/16.0), 4.5, brNoise);
fullgraph.push_back(newfactors);
Values init;
init.insert((i+1), Pose2(6.9, 0.1, 0.01));
fullinit.insert((i+1), Pose2(6.9, 0.1, 0.01));
isam.update(newfactors, init, FastVector<size_t>(), constrained);
++ i;
}
// Compare solutions
EXPECT(isam_check(fullgraph, fullinit, isam));
// Check that x3 and x4 are last, but either can come before the other
EXPECT(isam.getOrdering()[(3)] == 12 && isam.getOrdering()[(4)] == 13);
// Check gradient at each node
typedef ISAM2::sharedClique sharedClique;
BOOST_FOREACH(const sharedClique& clique, isam.nodes()) {
// Compute expected gradient
FactorGraph<JacobianFactor> jfg;
jfg.push_back(JacobianFactor::shared_ptr(new JacobianFactor(*clique->conditional())));
VectorValues expectedGradient(*allocateVectorValues(isam));
gradientAtZero(jfg, expectedGradient);
// Compare with actual gradients
int variablePosition = 0;
for(GaussianConditional::const_iterator jit = clique->conditional()->begin(); jit != clique->conditional()->end(); ++jit) {
const int dim = clique->conditional()->dim(jit);
Vector actual = clique->gradientContribution().segment(variablePosition, dim);
EXPECT(assert_equal(expectedGradient[*jit], actual));
variablePosition += dim;
}
LONGS_EQUAL(clique->gradientContribution().rows(), variablePosition);
}
// Check gradient
VectorValues expectedGradient(*allocateVectorValues(isam));
gradientAtZero(FactorGraph<JacobianFactor>(isam), expectedGradient);
VectorValues expectedGradient2(gradient(FactorGraph<JacobianFactor>(isam), VectorValues::Zero(expectedGradient)));
VectorValues actualGradient(*allocateVectorValues(isam));
gradientAtZero(isam, actualGradient);
EXPECT(assert_equal(expectedGradient2, expectedGradient));
EXPECT(assert_equal(expectedGradient, actualGradient));
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
/* ************************************************************************* */