gtsam/tests/testGaussianFactor.cpp

412 lines
12 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testGaussianFactor.cpp
* @brief Unit tests for Linear Factor
* @author Christian Potthast
* @author Frank Dellaert
**/
#include <tests/smallExample.h>
#include <gtsam/nonlinear/Symbol.h>
#include <gtsam/nonlinear/Ordering.h>
#include <gtsam/linear/GaussianConditional.h>
#include <gtsam/base/Matrix.h>
#include <gtsam/base/Testable.h>
#include <CppUnitLite/TestHarness.h>
#include <boost/tuple/tuple.hpp>
#include <boost/assign/std/list.hpp> // for operator +=
#include <boost/assign/std/set.hpp>
#include <boost/assign/std/map.hpp> // for insert
using namespace boost::assign;
#include <iostream>
using namespace std;
using namespace gtsam;
// Convenience for named keys
using symbol_shorthand::X;
using symbol_shorthand::L;
static SharedDiagonal
sigma0_1 = noiseModel::Isotropic::Sigma(2,0.1), sigma_02 = noiseModel::Isotropic::Sigma(2,0.2),
constraintModel = noiseModel::Constrained::All(2);
//const Key kx1 = X(1), kx2 = X(2), kl1 = L(1); // FIXME: throws exception
/* ************************************************************************* */
TEST( GaussianFactor, linearFactor )
{
const Key kx1 = X(1), kx2 = X(2), kl1 = L(1);
Ordering ordering; ordering += kx1,kx2,kl1;
Matrix I = eye(2);
Vector b = Vector_(2, 2.0, -1.0);
JacobianFactor expected(ordering[kx1], -10*I,ordering[kx2], 10*I, b, noiseModel::Unit::Create(2));
// create a small linear factor graph
FactorGraph<JacobianFactor> fg = example::createGaussianFactorGraph(ordering);
// get the factor kf2 from the factor graph
JacobianFactor::shared_ptr lf = fg[1];
// check if the two factors are the same
EXPECT(assert_equal(expected,*lf));
}
///* ************************************************************************* */
// SL-FIX TEST( GaussianFactor, keys )
//{
// // get the factor kf2 from the small linear factor graph
// Ordering ordering; ordering += kx1,kx2,kl1;
// GaussianFactorGraph fg = createGaussianFactorGraph(ordering);
// GaussianFactor::shared_ptr lf = fg[1];
// list<Symbol> expected;
// expected.push_back(kx1);
// expected.push_back(kx2);
// EXPECT(lf->keys() == expected);
//}
///* ************************************************************************* */
// SL-FIX TEST( GaussianFactor, dimensions )
//{
// // get the factor kf2 from the small linear factor graph
// Ordering ordering; ordering += kx1,kx2,kl1;
// GaussianFactorGraph fg = createGaussianFactorGraph(ordering);
//
// // Check a single factor
// Dimensions expected;
// insert(expected)(kx1, 2)(kx2, 2);
// Dimensions actual = fg[1]->dimensions();
// EXPECT(expected==actual);
//}
/* ************************************************************************* */
TEST( GaussianFactor, getDim )
{
const Key kx1 = X(1), kx2 = X(2), kl1 = L(1);
// get a factor
Ordering ordering; ordering += kx1,kx2,kl1;
GaussianFactorGraph fg = example::createGaussianFactorGraph(ordering);
GaussianFactor::shared_ptr factor = fg[0];
// get the size of a variable
size_t actual = factor->getDim(factor->find(ordering[kx1]));
// verify
size_t expected = 2;
EXPECT_LONGS_EQUAL(expected, actual);
}
///* ************************************************************************* */
// SL-FIX TEST( GaussianFactor, combine )
//{
// // create a small linear factor graph
// Ordering ordering; ordering += kx1,kx2,kl1;
// GaussianFactorGraph fg = createGaussianFactorGraph(ordering);
//
// // get two factors from it and insert the factors into a vector
// vector<GaussianFactor::shared_ptr> lfg;
// lfg.push_back(fg[4 - 1]);
// lfg.push_back(fg[2 - 1]);
//
// // combine in a factor
// GaussianFactor combined(lfg);
//
// // sigmas
// double sigma2 = 0.1;
// double sigma4 = 0.2;
// Vector sigmas = Vector_(4, sigma4, sigma4, sigma2, sigma2);
//
// // the expected combined linear factor
// Matrix Ax2 = Matrix_(4, 2, // x2
// -5., 0.,
// +0., -5.,
// 10., 0.,
// +0., 10.);
//
// Matrix Al1 = Matrix_(4, 2, // l1
// 5., 0.,
// 0., 5.,
// 0., 0.,
// 0., 0.);
//
// Matrix Ax1 = Matrix_(4, 2, // x1
// 0.00, 0., // f4
// 0.00, 0., // f4
// -10., 0., // f2
// 0.00, -10. // f2
// );
//
// // the RHS
// Vector b2(4);
// b2(0) = -1.0;
// b2(1) = 1.5;
// b2(2) = 2.0;
// b2(3) = -1.0;
//
// // use general constructor for making arbitrary factors
// vector<pair<Symbol, Matrix> > meas;
// meas.push_back(make_pair(kx2, Ax2));
// meas.push_back(make_pair(kl1, Al1));
// meas.push_back(make_pair(kx1, Ax1));
// GaussianFactor expected(meas, b2, noiseModel::Diagonal::Sigmas(ones(4)));
// EXPECT(assert_equal(expected,combined));
//}
/* ************************************************************************* */
TEST( GaussianFactor, error )
{
const Key kx1 = X(1), kx2 = X(2), kl1 = L(1);
// create a small linear factor graph
Ordering ordering; ordering += kx1,kx2,kl1;
GaussianFactorGraph fg = example::createGaussianFactorGraph(ordering);
// get the first factor from the factor graph
GaussianFactor::shared_ptr lf = fg[0];
// check the error of the first factor with noisy config
VectorValues cfg = example::createZeroDelta(ordering);
// calculate the error from the factor kf1
// note the error is the same as in testNonlinearFactor
double actual = lf->error(cfg);
DOUBLES_EQUAL( 1.0, actual, 0.00000001 );
}
///* ************************************************************************* */
// SL-FIX TEST( GaussianFactor, eliminate )
//{
// // create a small linear factor graph
// Ordering ordering; ordering += kx1,kx2,kl1;
// GaussianFactorGraph fg = createGaussianFactorGraph(ordering);
//
// // get two factors from it and insert the factors into a vector
// vector<GaussianFactor::shared_ptr> lfg;
// lfg.push_back(fg[4 - 1]);
// lfg.push_back(fg[2 - 1]);
//
// // combine in a factor
// GaussianFactor combined(lfg);
//
// // eliminate the combined factor
// GaussianConditional::shared_ptr actualCG;
// GaussianFactor::shared_ptr actualLF;
// boost::tie(actualCG,actualLF) = combined.eliminate(kx2);
//
// // create expected Conditional Gaussian
// Matrix I = eye(2)*sqrt(125.0);
// Matrix R11 = I, S12 = -0.2*I, S13 = -0.8*I;
// Vector d = I*Vector_(2,0.2,-0.14);
//
// // Check the conditional Gaussian
// GaussianConditional
// expectedCG(kx2, d, R11, kl1, S12, kx1, S13, repeat(2, 1.0));
//
// // the expected linear factor
// I = eye(2)/0.2236;
// Matrix Bl1 = I, Bx1 = -I;
// Vector b1 = I*Vector_(2,0.0,0.2);
//
// GaussianFactor expectedLF(kl1, Bl1, kx1, Bx1, b1, repeat(2,1.0));
//
// // check if the result matches
// EXPECT(assert_equal(expectedCG,*actualCG,1e-3));
// EXPECT(assert_equal(expectedLF,*actualLF,1e-3));
//}
/* ************************************************************************* */
TEST( GaussianFactor, matrix )
{
const Key kx1 = X(1), kx2 = X(2), kl1 = L(1);
// create a small linear factor graph
Ordering ordering; ordering += kx1,kx2,kl1;
FactorGraph<JacobianFactor> fg = example::createGaussianFactorGraph(ordering);
// get the factor kf2 from the factor graph
//GaussianFactor::shared_ptr lf = fg[1]; // NOTE: using the older version
Vector b2 = Vector_(2, 0.2, -0.1);
Matrix I = eye(2);
// render with a given ordering
Ordering ord;
ord += kx1,kx2;
JacobianFactor::shared_ptr lf(new JacobianFactor(ord[kx1], -I, ord[kx2], I, b2, sigma0_1));
// Test whitened version
Matrix A_act1; Vector b_act1;
boost::tie(A_act1,b_act1) = lf->matrix(true);
Matrix A1 = Matrix_(2,4,
-10.0, 0.0, 10.0, 0.0,
000.0,-10.0, 0.0, 10.0 );
Vector b1 = Vector_(2, 2.0, -1.0);
EQUALITY(A_act1,A1);
EQUALITY(b_act1,b1);
// Test unwhitened version
Matrix A_act2; Vector b_act2;
boost::tie(A_act2,b_act2) = lf->matrix(false);
Matrix A2 = Matrix_(2,4,
-1.0, 0.0, 1.0, 0.0,
000.0,-1.0, 0.0, 1.0 );
//Vector b2 = Vector_(2, 2.0, -1.0);
EQUALITY(A_act2,A2);
EQUALITY(b_act2,b2);
// Ensure that whitening is consistent
boost::shared_ptr<noiseModel::Gaussian> model = lf->get_model();
model->WhitenSystem(A_act2, b_act2);
EQUALITY(A_act1, A_act2);
EQUALITY(b_act1, b_act2);
}
/* ************************************************************************* */
TEST( GaussianFactor, matrix_aug )
{
const Key kx1 = X(1), kx2 = X(2), kl1 = L(1);
// create a small linear factor graph
Ordering ordering; ordering += kx1,kx2,kl1;
FactorGraph<JacobianFactor> fg = example::createGaussianFactorGraph(ordering);
// get the factor kf2 from the factor graph
//GaussianFactor::shared_ptr lf = fg[1];
Vector b2 = Vector_(2, 0.2, -0.1);
Matrix I = eye(2);
// render with a given ordering
Ordering ord;
ord += kx1,kx2;
JacobianFactor::shared_ptr lf(new JacobianFactor(ord[kx1], -I, ord[kx2], I, b2, sigma0_1));
// Test unwhitened version
Matrix Ab_act1;
Ab_act1 = lf->matrix_augmented(false);
Matrix Ab1 = Matrix_(2,5,
-1.0, 0.0, 1.0, 0.0, 0.2,
00.0,- 1.0, 0.0, 1.0, -0.1 );
EQUALITY(Ab_act1,Ab1);
// Test whitened version
Matrix Ab_act2;
Ab_act2 = lf->matrix_augmented(true);
Matrix Ab2 = Matrix_(2,5,
-10.0, 0.0, 10.0, 0.0, 2.0,
00.0, -10.0, 0.0, 10.0, -1.0 );
EQUALITY(Ab_act2,Ab2);
// Ensure that whitening is consistent
boost::shared_ptr<noiseModel::Gaussian> model = lf->get_model();
model->WhitenInPlace(Ab_act1);
EQUALITY(Ab_act1, Ab_act2);
}
/* ************************************************************************* */
// small aux. function to print out lists of anything
template<class T>
void print(const list<T>& i) {
copy(i.begin(), i.end(), ostream_iterator<T> (cout, ","));
cout << endl;
}
///* ************************************************************************* */
// SL-FIX TEST( GaussianFactor, sparse )
//{
// // create a small linear factor graph
// Ordering ordering; ordering += kx1,kx2,kl1;
// GaussianFactorGraph fg = createGaussianFactorGraph(ordering);
//
// // get the factor kf2 from the factor graph
// GaussianFactor::shared_ptr lf = fg[1];
//
// // render with a given ordering
// Ordering ord;
// ord += kx1,kx2;
//
// list<int> i,j;
// list<double> s;
// boost::tie(i,j,s) = lf->sparse(fg.columnIndices(ord));
//
// list<int> i1,j1;
// i1 += 1,2,1,2;
// j1 += 1,2,3,4;
//
// list<double> s1;
// s1 += -10,-10,10,10;
//
// EXPECT(i==i1);
// EXPECT(j==j1);
// EXPECT(s==s1);
//}
///* ************************************************************************* */
// SL-FIX TEST( GaussianFactor, sparse2 )
//{
// // create a small linear factor graph
// Ordering ordering; ordering += kx1,kx2,kl1;
// GaussianFactorGraph fg = createGaussianFactorGraph(ordering);
//
// // get the factor kf2 from the factor graph
// GaussianFactor::shared_ptr lf = fg[1];
//
// // render with a given ordering
// Ordering ord;
// ord += kx2,kl1,kx1;
//
// list<int> i,j;
// list<double> s;
// boost::tie(i,j,s) = lf->sparse(fg.columnIndices(ord));
//
// list<int> i1,j1;
// i1 += 1,2,1,2;
// j1 += 5,6,1,2;
//
// list<double> s1;
// s1 += -10,-10,10,10;
//
// EXPECT(i==i1);
// EXPECT(j==j1);
// EXPECT(s==s1);
//}
/* ************************************************************************* */
TEST( GaussianFactor, size )
{
// create a linear factor graph
const Key kx1 = X(1), kx2 = X(2), kl1 = L(1);
Ordering ordering; ordering += kx1,kx2,kl1;
GaussianFactorGraph fg = example::createGaussianFactorGraph(ordering);
// get some factors from the graph
boost::shared_ptr<GaussianFactor> factor1 = fg[0];
boost::shared_ptr<GaussianFactor> factor2 = fg[1];
boost::shared_ptr<GaussianFactor> factor3 = fg[2];
EXPECT_LONGS_EQUAL(1, factor1->size());
EXPECT_LONGS_EQUAL(2, factor2->size());
EXPECT_LONGS_EQUAL(2, factor3->size());
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
/* ************************************************************************* */