gtsam/gtsam/linear/KalmanFilter.cpp

161 lines
5.8 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file KalmanFilter.cpp
*
* @brief Simple linear Kalman filter.
* Implemented using factor graphs, i.e., does Cholesky-based SRIF, really.
*
* @date Sep 3, 2011
* @author Stephen Williams
* @author Frank Dellaert
*/
#include <gtsam/linear/GaussianSequentialSolver.h>
#include <gtsam/linear/JacobianFactor.h>
#include <gtsam/linear/KalmanFilter.h>
#include <gtsam/linear/HessianFactor.h>
#include <gtsam/base/Testable.h>
#include <boost/make_shared.hpp>
namespace gtsam {
using namespace std;
/// Auxiliary function to solve factor graph and return pointer to root conditional
KalmanFilter::State solve(const GaussianFactorGraph& factorGraph,
bool useQR) {
// Solve the factor graph
GaussianSequentialSolver solver(factorGraph, useQR);
GaussianBayesNet::shared_ptr bayesNet = solver.eliminate();
// As this is a filter, all we need is the posterior P(x_t),
// so we just keep the root of the Bayes net
GaussianConditional::shared_ptr conditional = bayesNet->back();
// TODO: awful ! A copy constructor followed by ANOTHER copy constructor in make_shared?
return boost::make_shared<GaussianDensity>(*conditional);
}
/* ************************************************************************* */
KalmanFilter::State fuse(const KalmanFilter::State& p,
GaussianFactor* newFactor, bool useQR) {
// Create a factor graph
GaussianFactorGraph factorGraph;
// push back previous solution and new factor
factorGraph.push_back(p->toFactor());
factorGraph.push_back(GaussianFactor::shared_ptr(newFactor));
// Eliminate graph in order x0, x1, to get Bayes net P(x0|x1)P(x1)
return solve(factorGraph, useQR);
}
/* ************************************************************************* */
KalmanFilter::State KalmanFilter::init(const Vector& x0,
const SharedDiagonal& P0) {
// Create a factor graph f(x0), eliminate it into P(x0)
GaussianFactorGraph factorGraph;
factorGraph.add(0, I_, x0, P0); // |x-x0|^2_diagSigma
return solve(factorGraph, useQR());
}
/* ************************************************************************* */
KalmanFilter::State KalmanFilter::init(const Vector& x, const Matrix& P0) {
// Create a factor graph f(x0), eliminate it into P(x0)
GaussianFactorGraph factorGraph;
// 0.5*(x-x0)'*inv(Sigma)*(x-x0)
HessianFactor::shared_ptr factor(new HessianFactor(0, x, P0));
factorGraph.push_back(factor);
return solve(factorGraph, useQR());
}
/* ************************************************************************* */
void KalmanFilter::print(const string& s) const {
cout << "KalmanFilter " << s << ", dim = " << n_ << endl;
}
/* ************************************************************************* */
KalmanFilter::State KalmanFilter::predict(const State& p, const Matrix& F,
const Matrix& B, const Vector& u, const SharedDiagonal& model) {
// The factor related to the motion model is defined as
// f2(x_{t},x_{t+1}) = (F*x_{t} + B*u - x_{t+1}) * Q^-1 * (F*x_{t} + B*u - x_{t+1})^T
Index k = step(p);
return fuse(p, new JacobianFactor(k, -F, k + 1, I_, B * u, model), useQR());
}
/* ************************************************************************* */
KalmanFilter::State KalmanFilter::predictQ(const State& p, const Matrix& F,
const Matrix& B, const Vector& u, const Matrix& Q) {
#ifndef NDEBUG
int n = F.cols();
assert(F.rows() == n);
assert(B.rows() == n);
assert(B.cols() == u.size());
assert(Q.rows() == n);
assert(Q.cols() == n);
#endif
// The factor related to the motion model is defined as
// f2(x_{t},x_{t+1}) = (F*x_{t} + B*u - x_{t+1}) * Q^-1 * (F*x_{t} + B*u - x_{t+1})^T
// See documentation in HessianFactor, we have A1 = -F, A2 = I_, b = B*u:
// TODO: starts to seem more elaborate than straight-up KF equations?
Matrix M = inverse(Q), Ft = trans(F);
Matrix G12 = -Ft * M, G11 = -G12 * F, G22 = M;
Vector b = B * u, g2 = M * b, g1 = -Ft * g2;
double f = dot(b, g2);
Index k = step(p);
return fuse(p, new HessianFactor(k, k + 1, G11, G12, g1, G22, g2, f),
useQR());
}
/* ************************************************************************* */
KalmanFilter::State KalmanFilter::predict2(const State& p, const Matrix& A0,
const Matrix& A1, const Vector& b, const SharedDiagonal& model) {
// Nhe factor related to the motion model is defined as
// f2(x_{t},x_{t+1}) = |A0*x_{t} + A1*x_{t+1} - b|^2
Index k = step(p);
return fuse(p, new JacobianFactor(k, A0, k + 1, A1, b, model), useQR());
}
/* ************************************************************************* */
KalmanFilter::State KalmanFilter::update(const State& p, const Matrix& H,
const Vector& z, const SharedDiagonal& model) {
// The factor related to the measurements would be defined as
// f2 = (h(x_{t}) - z_{t}) * R^-1 * (h(x_{t}) - z_{t})^T
// = (x_{t} - z_{t}) * R^-1 * (x_{t} - z_{t})^T
Index k = step(p);
return fuse(p, new JacobianFactor(k, H, z, model), useQR());
}
/* ************************************************************************* */
KalmanFilter::State KalmanFilter::updateQ(const State& p, const Matrix& H, const Vector& z,
const Matrix& Q) {
Index k = step(p);
Matrix M = inverse(Q), Ht = trans(H);
Matrix G = Ht * M * H;
Vector g = Ht * M * z;
double f = dot(z, M * z);
return fuse(p, new HessianFactor(k, G, g, f), useQR());
}
/* ************************************************************************* */
} // \namespace gtsam