gtsam/gtsam_unstable/nonlinear/tests/testSQPSimple.cpp

276 lines
9.2 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testQPSimple.cpp
* @brief Unit tests for testQPSimple
* @author Krunal Chande
* @author Duy-Nguyen Ta
* @author Luca Carlone
* @date Dec 15, 2014
*/
#include <gtsam/inference/Symbol.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/LinearContainerFactor.h>
#include <gtsam_unstable/linear/QPSolver.h>
#include <gtsam_unstable/nonlinear/NonlinearConstraint.h>
#include <CppUnitLite/TestHarness.h>
#include <iostream>
namespace gtsam {
class LinearEqualityManifoldFactorGraph: public FactorGraph<NonlinearFactor> {
public:
/// default constructor
LinearEqualityManifoldFactorGraph() {
}
/// linearize to a LinearEqualityFactorGraph
LinearEqualityFactorGraph::shared_ptr linearize(
const Values& linearizationPoint) const {
LinearEqualityFactorGraph::shared_ptr linearGraph(
new LinearEqualityFactorGraph());
BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, *this){
JacobianFactor::shared_ptr jacobian = boost::dynamic_pointer_cast<JacobianFactor>(
factor->linearize(linearizationPoint));
NonlinearConstraint::shared_ptr constraint = boost::dynamic_pointer_cast<NonlinearConstraint>(factor);
linearGraph->add(LinearEquality(*jacobian, constraint->dualKey()));
}
return linearGraph;
}
/**
* Return true if the max absolute error all factors is less than a tolerance
*/
bool checkFeasibility(const Values& values, double tol) const {
BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, *this){
NoiseModelFactor::shared_ptr noiseModelFactor = boost::dynamic_pointer_cast<NoiseModelFactor>(
factor);
Vector error = noiseModelFactor->unwhitenedError(values);
if (error.lpNorm<Eigen::Infinity>() > tol) {
return false;
}
}
return true;
}
};
class NonlinearEqualityFactorGraph: public LinearEqualityManifoldFactorGraph {
public:
/// default constructor
NonlinearEqualityFactorGraph() {
}
GaussianFactorGraph::shared_ptr multipliedHessians(const Values& values, const VectorValues& duals) const {
GaussianFactorGraph::shared_ptr constrainedHessians(new GaussianFactorGraph());
BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, *this) {
NonlinearConstraint::shared_ptr constraint = boost::dynamic_pointer_cast<NonlinearConstraint>(factor);
constrainedHessians->push_back(constraint->multipliedHessian(values, duals));
}
return constrainedHessians;
}
};
struct NLP {
NonlinearFactorGraph cost;
NonlinearEqualityFactorGraph linearEqualities;
NonlinearEqualityFactorGraph nonlinearEqualities;
};
struct SQPSimpleState {
Values values;
VectorValues duals;
bool converged;
/// Default constructor
SQPSimpleState() : values(), duals(), converged(false) {}
/// Constructor with an initialValues
SQPSimpleState(const Values& initialValues) :
values(initialValues), duals(VectorValues()), converged(false) {
}
};
/**
* Simple SQP optimizer to solve nonlinear constrained problems.
* This simple version won't care about nonconvexity, which needs
* more advanced techniques to solve, e.g., merit function, line search, second-order correction etc.
*/
class SQPSimple {
NLP nlp_;
static const double errorTol = 1e-5;
public:
SQPSimple(const NLP& nlp) :
nlp_(nlp) {
}
/// Check if \nabla f(x) - \lambda * \nabla c(x) == 0
bool isDualFeasible(const VectorValues& delta) const {
return delta.vector().lpNorm<Eigen::Infinity>() < errorTol;
}
/// Check if c(x) == 0
bool isPrimalFeasible(const SQPSimpleState& state) const {
return nlp_.linearEqualities.checkFeasibility(state.values, errorTol)
&& nlp_.nonlinearEqualities.checkFeasibility(state.values, errorTol);
}
/// Check convergence
bool checkConvergence(const SQPSimpleState& state, const VectorValues& delta) const {
return isPrimalFeasible(state) & isDualFeasible(delta);
}
/**
* Single iteration of SQP
*/
SQPSimpleState iterate(const SQPSimpleState& state) const {
// construct the qp subproblem
QP qp;
qp.cost = *nlp_.cost.linearize(state.values);
GaussianFactorGraph::shared_ptr multipliedHessians = nlp_.nonlinearEqualities.multipliedHessians(state.values, state.duals);
qp.cost.push_back(*multipliedHessians);
qp.equalities.add(*nlp_.linearEqualities.linearize(state.values));
qp.equalities.add(*nlp_.nonlinearEqualities.linearize(state.values));
// solve the QP subproblem
VectorValues delta, duals;
QPSolver qpSolver(qp);
boost::tie(delta, duals) = qpSolver.optimize();
// update new state
SQPSimpleState newState;
newState.values = state.values.retract(delta);
newState.duals = duals;
newState.converged = checkConvergence(newState, delta);
return newState;
}
/**
* Main optimization function.
*/
std::pair<Values, VectorValues> optimize(const Values& initialValues) const {
SQPSimpleState state(initialValues);
while (!state.converged) {
state = iterate(state);
}
return std::make_pair(initialValues, VectorValues());
}
};
}
using namespace std;
using namespace gtsam::symbol_shorthand;
using namespace gtsam;
const double tol = 1e-10;
//******************************************************************************
TEST(testSQPSimple, Problem2) {
// Simple quadratic cost: x1^2 + x2^2
// Note the Hessian encodes:
// 0.5*x1'*G11*x1 + x1'*G12*x2 + 0.5*x2'*G22*x2 - x1'*g1 - x2'*g2 + 0.5*f
// Hence here we have G11 = 2, G12 = 0, G22 = 2, g1 = 0, g2 = 0, f = 0
HessianFactor hf(X(1), X(2), 2.0 * ones(1,1), zero(1), zero(1),
2*ones(1,1), zero(1) , 0);
LinearEqualityFactorGraph equalities;
equalities.push_back(LinearEquality(X(1), ones(1), X(2), ones(1), -1*ones(1), 0)); // x + y - 1 = 0
// Compare against QP
QP qp;
qp.cost.add(hf);
qp.equalities = equalities;
// instantiate QPsolver
QPSolver qpSolver(qp);
// create initial values for optimization
VectorValues initialVectorValues;
initialVectorValues.insert(X(1), zero(1));
initialVectorValues.insert(X(2), zero(1));
VectorValues expectedSolution = qpSolver.optimize(initialVectorValues).first;
cout<<"expectedSolution.at(X(1))[0]: "<<expectedSolution.at(X(1))[0]<<endl;
cout<<"expectedSolution.at(X(2))[0]: "<<expectedSolution.at(X(2))[0]<<endl;
//Instantiate NLP
NLP nlp;
nlp.cost.add(); // wrap it using linearcontainerfactor
nlp.linearEqualities // for constraint it has to inherit from
// write an evaluate error and return jacobian
// Instantiate SQP
SQPSimple sqpSimple(nlp);
}
//******************************************************************************
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
//******************************************************************************
//TEST(testSQPSimple, Problem1 ) {
//
// // build a quadratic Objective function x1^2 - x1*x2 + x2^2 - 3*x1 + 5
// // Note the Hessian encodes:
// // 0.5*x1'*G11*x1 + x1'*G12*x2 + 0.5*x2'*G22*x2 - x1'*g1 - x2'*g2 + 0.5*f
// // Hence, we have G11=2, G12 = -1, g1 = +3, G22 = 2, g2 = 0, f = 10
// HessianFactor lf(X(1), X(2), 2.0 * ones(1, 1), -ones(1, 1), 3.0 * ones(1),
// 2.0 * ones(1, 1), zero(1), 10.0);
//
// // build linear inequalities
// LinearInequalityFactorGraph inequalities;
// inequalities.push_back(
// LinearInequality(X(1), ones(1, 1), X(2), ones(1, 1), 2, 0)); // x1 + x2 <= 2 --> x1 + x2 -2 <= 0, --> b=2
// inequalities.push_back(LinearInequality(X(1), -ones(1, 1), 0, 1)); // -x1 <= 0
// inequalities.push_back(LinearInequality(X(2), -ones(1, 1), 0, 2)); // -x2 <= 0
// inequalities.push_back(LinearInequality(X(1), ones(1, 1), 1.5, 3)); // x1 <= 3/2
//
// // Compare against a QP
// QP qp;
// qp.cost.add(lf);
// qp.inequalities = inequalities;
//
// // instantiate QPsolver
// QPSolver qpSolver(qp);
// // create initial values for optimization
// VectorValues initialVectorValues;
// initialVectorValues.insert(X(1), zero(1));
// initialVectorValues.insert(X(2), zero(1));
// VectorValues expectedSolution = qpSolver.optimize(initialVectorValues).first;
//
//
// NonlinearEqualityFactorGraph linearEqualities;
// NonlinearEqualityFactorGraph nonlinearEqualities;
// nonlinearEqualities.push_back(NonlinearEquality(X(1), ones(1, 1), X(2), ones(1, 1), 2, 0)));
//
// NLP nlp;
// nlp.cost.add(lf);
// nlp.linearEqualities.push_back(NonlinearEqualityFactorGraph());
// // instantiate QPsolver
// SQPSimple sqpSolver(nlp);
// // create initial values for optimization
// Values initialValues;
// initialValues.insert(X(1), zero(1));
// initialValues.insert(X(2), zero(1));
//
// std::pair<Vector, VectorValues> actualSolution = sqpSolver.optimize(initialValues);
//
// DOUBLES_EQUAL(expectedSolution.at(X(1))[0], actualSolution.at<double>(X(1)),
// tol);
// DOUBLES_EQUAL(expectedSolution.at(X(2))[0], actualSolution.at<double>(X(2)),
// tol);
//}