138 lines
4.7 KiB
C++
138 lines
4.7 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file testLinearlyConstrainedNonlinearOptimizer.cpp
|
|
* @brief Unit tests for LinearlyConstrainedNonlinearOptimizer
|
|
* @author Krunal Chande
|
|
* @author Duy-Nguyen Ta
|
|
* @author Luca Carlone
|
|
* @date Dec 15, 2014
|
|
*/
|
|
|
|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
|
#include <gtsam/nonlinear/LinearContainerFactor.h>
|
|
#include <gtsam/inference/Symbol.h>
|
|
#include <gtsam_unstable/linear/QPSolver.h>
|
|
#include <CppUnitLite/TestHarness.h>
|
|
#include <iostream>
|
|
|
|
|
|
namespace gtsam {
|
|
struct LinearlyConstrainedNLP {
|
|
NonlinearFactorGraph cost;
|
|
LinearEqualityFactorGraph equalities;
|
|
LinearInequalityFactorGraph inequalities;
|
|
};
|
|
|
|
struct LinearlyConstrainedNLPState {
|
|
Values values;
|
|
VectorValues duals;
|
|
bool converged;
|
|
LinearlyConstrainedNLPState(const Values& initialValues) :
|
|
values(initialValues), duals(VectorValues()), converged(false) {
|
|
}
|
|
};
|
|
class LinearlyConstrainedNonLinearOptimizer {
|
|
LinearlyConstrainedNLP lcNLP_;
|
|
public:
|
|
LinearlyConstrainedNonLinearOptimizer(const LinearlyConstrainedNLP& lcNLP): lcNLP_(lcNLP) {}
|
|
|
|
LinearlyConstrainedNLPState iterate(const LinearlyConstrainedNLPState& state) const {
|
|
QP qp;
|
|
qp.cost = lcNLP_.cost.linearize(state.values);
|
|
qp.equalities = lcNLP_.equalities;
|
|
qp.inequalities = lcNLP_.inequalities;
|
|
QPSolver qpSolver(qp);
|
|
VectorValues delta, duals;
|
|
boost::tie(delta, duals) = qpSolver.optimize();
|
|
LinearlyConstrainedNLPState newState;
|
|
newState.values = state.values.retract(delta);
|
|
newState.duals = duals;
|
|
newState.converged = checkConvergence(newState.values, newState.duals);
|
|
return newState;
|
|
}
|
|
|
|
/**
|
|
* Main optimization function.
|
|
*/
|
|
std::pair<Values, VectorValues> optimize(const Values& initialValues) const {
|
|
LinearlyConstrainedNLPState state(initialValues);
|
|
while(!state.converged){
|
|
state = iterate(state);
|
|
}
|
|
|
|
return std::make_pair(initialValues, VectorValues());
|
|
}
|
|
};
|
|
}
|
|
|
|
using namespace std;
|
|
using namespace gtsam::symbol_shorthand;
|
|
using namespace gtsam;
|
|
const double tol = 1e-10;
|
|
//******************************************************************************
|
|
TEST(LinearlyConstrainedNonlinearOptimizer, Problem1 ) {
|
|
|
|
// build a quadratic Objective function x1^2 - x1*x2 + x2^2 - 3*x1 + 5
|
|
// Note the Hessian encodes:
|
|
// 0.5*x1'*G11*x1 + x1'*G12*x2 + 0.5*x2'*G22*x2 - x1'*g1 - x2'*g2 + 0.5*f
|
|
// Hence, we have G11=2, G12 = -1, g1 = +3, G22 = 2, g2 = 0, f = 10
|
|
HessianFactor lf(X(1), X(2), 2.0 * ones(1, 1), -ones(1, 1), 3.0 * ones(1),
|
|
2.0 * ones(1, 1), zero(1), 10.0);
|
|
|
|
// build linear inequalities
|
|
LinearInequalityFactorGraph inequalities;
|
|
inequalities.push_back(LinearInequality(X(1), ones(1,1), X(2), ones(1,1), 2, 0)); // x1 + x2 <= 2 --> x1 + x2 -2 <= 0, --> b=2
|
|
inequalities.push_back(LinearInequality(X(1), -ones(1,1), 0, 1)); // -x1 <= 0
|
|
inequalities.push_back(LinearInequality(X(2), -ones(1,1), 0, 2)); // -x2 <= 0
|
|
inequalities.push_back(LinearInequality(X(1), ones(1,1), 1.5, 3)); // x1 <= 3/2
|
|
|
|
// Instantiate LinearlyConstrainedNLP, pretending that the cost is not quadratic
|
|
// (LinearContainerFactor makes a linear factor behave like a nonlinear one)
|
|
LinearlyConstrainedNLP lcNLP;
|
|
lcNLP.cost.add(LinearContainerFactor(lf));
|
|
lcNLP.inequalities = inequalities;
|
|
|
|
// Compare against a QP
|
|
QP qp;
|
|
qp.cost.add(lf);
|
|
qp.inequalities = inequalities;
|
|
|
|
// instantiate QPsolver
|
|
QPSolver qpSolver(qp);
|
|
// create initial values for optimization
|
|
VectorValues initialVectorValues;
|
|
initialVectorValues.insert(X(1), zero(1));
|
|
initialVectorValues.insert(X(2), zero(1));
|
|
VectorValues expectedSolution = qpSolver.optimize(initialVectorValues).first;
|
|
|
|
// instantiate LinearlyConstrainedNonLinearOptimizer
|
|
LinearlyConstrainedNonLinearOptimizer lcNLPSolver(lcNLP);
|
|
// create initial values for optimization
|
|
Values initialValues;
|
|
initialValues.insert(X(1), 0.0);
|
|
initialValues.insert(X(2), 0.0);
|
|
Values actualSolution = lcNLPSolver.optimize(initialValues).first;
|
|
|
|
|
|
DOUBLES_EQUAL(expectedSolution.at(X(1))[0], actualSolution.at<double>(X(1)), tol);
|
|
DOUBLES_EQUAL(expectedSolution.at(X(2))[0], actualSolution.at<double>(X(2)), tol);
|
|
}
|
|
|
|
//******************************************************************************
|
|
int main() {
|
|
TestResult tr;
|
|
return TestRegistry::runAllTests(tr);
|
|
}
|
|
//******************************************************************************
|
|
|