645 lines
18 KiB
C++
645 lines
18 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file smallExample.h
|
|
* @brief Create small example with two poses and one landmark
|
|
* @brief smallExample
|
|
* @author Carlos Nieto
|
|
*/
|
|
|
|
// \callgraph
|
|
|
|
|
|
#pragma once
|
|
|
|
#include <tests/simulated2D.h>
|
|
#include <gtsam/inference/Symbol.h>
|
|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
|
#include <gtsam/linear/GaussianBayesNet.h>
|
|
#include <gtsam/linear/GaussianFactorGraph.h>
|
|
#include <boost/tuple/tuple.hpp>
|
|
#include <boost/assign/list_of.hpp>
|
|
|
|
namespace gtsam {
|
|
namespace example {
|
|
|
|
/**
|
|
* Create small example for non-linear factor graph
|
|
*/
|
|
// inline boost::shared_ptr<const NonlinearFactorGraph> sharedNonlinearFactorGraph();
|
|
// inline NonlinearFactorGraph createNonlinearFactorGraph();
|
|
|
|
/**
|
|
* Create values structure to go with it
|
|
* The ground truth values structure for the example above
|
|
*/
|
|
// inline Values createValues();
|
|
|
|
/** Vector Values equivalent */
|
|
// inline VectorValues createVectorValues();
|
|
|
|
/**
|
|
* create a noisy values structure for a nonlinear factor graph
|
|
*/
|
|
// inline boost::shared_ptr<const Values> sharedNoisyValues();
|
|
// inline Values createNoisyValues();
|
|
|
|
/**
|
|
* Zero delta config
|
|
*/
|
|
// inline VectorValues createZeroDelta();
|
|
|
|
/**
|
|
* Delta config that, when added to noisyValues, returns the ground truth
|
|
*/
|
|
// inline VectorValues createCorrectDelta();
|
|
|
|
/**
|
|
* create a linear factor graph
|
|
* The non-linear graph above evaluated at NoisyValues
|
|
*/
|
|
// inline GaussianFactorGraph createGaussianFactorGraph();
|
|
|
|
/**
|
|
* create small Chordal Bayes Net x <- y
|
|
*/
|
|
// inline GaussianBayesNet createSmallGaussianBayesNet();
|
|
|
|
/**
|
|
* Create really non-linear factor graph (cos/sin)
|
|
*/
|
|
// inline boost::shared_ptr<const NonlinearFactorGraph>
|
|
//sharedReallyNonlinearFactorGraph();
|
|
// inline NonlinearFactorGraph createReallyNonlinearFactorGraph();
|
|
|
|
/**
|
|
* Create a full nonlinear smoother
|
|
* @param T number of time-steps
|
|
*/
|
|
// inline std::pair<NonlinearFactorGraph, Values> createNonlinearSmoother(int T);
|
|
|
|
/**
|
|
* Create a Kalman smoother by linearizing a non-linear factor graph
|
|
* @param T number of time-steps
|
|
*/
|
|
// inline GaussianFactorGraph createSmoother(int T);
|
|
|
|
/* ******************************************************* */
|
|
// Linear Constrained Examples
|
|
/* ******************************************************* */
|
|
|
|
/**
|
|
* Creates a simple constrained graph with one linear factor and
|
|
* one binary equality constraint that sets x = y
|
|
*/
|
|
// inline GaussianFactorGraph createSimpleConstraintGraph();
|
|
// inline VectorValues createSimpleConstraintValues();
|
|
|
|
/**
|
|
* Creates a simple constrained graph with one linear factor and
|
|
* one binary constraint.
|
|
*/
|
|
// inline GaussianFactorGraph createSingleConstraintGraph();
|
|
// inline VectorValues createSingleConstraintValues();
|
|
|
|
/**
|
|
* Creates a constrained graph with a linear factor and two
|
|
* binary constraints that share a node
|
|
*/
|
|
// inline GaussianFactorGraph createMultiConstraintGraph();
|
|
// inline VectorValues createMultiConstraintValues();
|
|
|
|
/* ******************************************************* */
|
|
// Planar graph with easy subtree for SubgraphPreconditioner
|
|
/* ******************************************************* */
|
|
|
|
/*
|
|
* Create factor graph with N^2 nodes, for example for N=3
|
|
* x13-x23-x33
|
|
* | | |
|
|
* x12-x22-x32
|
|
* | | |
|
|
* -x11-x21-x31
|
|
* with x11 clamped at (1,1), and others related by 2D odometry.
|
|
*/
|
|
// inline boost::tuple<GaussianFactorGraph, VectorValues> planarGraph(size_t N);
|
|
|
|
/*
|
|
* Create canonical ordering for planar graph that also works for tree
|
|
* With x11 the root, e.g. for N=3
|
|
* x33 x23 x13 x32 x22 x12 x31 x21 x11
|
|
*/
|
|
// inline Ordering planarOrdering(size_t N);
|
|
|
|
/*
|
|
* Split graph into tree and loop closing constraints, e.g., with N=3
|
|
* x13-x23-x33
|
|
* |
|
|
* x12-x22-x32
|
|
* |
|
|
* -x11-x21-x31
|
|
*/
|
|
// inline std::pair<GaussianFactorGraph, GaussianFactorGraph > splitOffPlanarTree(
|
|
// size_t N, const GaussianFactorGraph& original);
|
|
|
|
|
|
|
|
// Implementations
|
|
|
|
// using namespace gtsam::noiseModel;
|
|
|
|
namespace impl {
|
|
typedef boost::shared_ptr<NonlinearFactor> shared_nlf;
|
|
|
|
static SharedDiagonal sigma1_0 = noiseModel::Isotropic::Sigma(2,1.0);
|
|
static SharedDiagonal sigma0_1 = noiseModel::Isotropic::Sigma(2,0.1);
|
|
static SharedDiagonal sigma0_2 = noiseModel::Isotropic::Sigma(2,0.2);
|
|
static SharedDiagonal constraintModel = noiseModel::Constrained::All(2);
|
|
|
|
static const Key _l1_=0, _x1_=1, _x2_=2;
|
|
static const Key _x_=0, _y_=1, _z_=2;
|
|
} // \namespace impl
|
|
|
|
|
|
/* ************************************************************************* */
|
|
inline boost::shared_ptr<const NonlinearFactorGraph> sharedNonlinearFactorGraph() {
|
|
using namespace impl;
|
|
using symbol_shorthand::X;
|
|
using symbol_shorthand::L;
|
|
// Create
|
|
boost::shared_ptr<NonlinearFactorGraph> nlfg(
|
|
new NonlinearFactorGraph);
|
|
|
|
// prior on x1
|
|
Point2 mu(0,0);
|
|
shared_nlf f1(new simulated2D::Prior(mu, sigma0_1, X(1)));
|
|
nlfg->push_back(f1);
|
|
|
|
// odometry between x1 and x2
|
|
Point2 z2(1.5, 0);
|
|
shared_nlf f2(new simulated2D::Odometry(z2, sigma0_1, X(1), X(2)));
|
|
nlfg->push_back(f2);
|
|
|
|
// measurement between x1 and l1
|
|
Point2 z3(0, -1);
|
|
shared_nlf f3(new simulated2D::Measurement(z3, sigma0_2, X(1), L(1)));
|
|
nlfg->push_back(f3);
|
|
|
|
// measurement between x2 and l1
|
|
Point2 z4(-1.5, -1.);
|
|
shared_nlf f4(new simulated2D::Measurement(z4, sigma0_2, X(2), L(1)));
|
|
nlfg->push_back(f4);
|
|
|
|
return nlfg;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
inline NonlinearFactorGraph createNonlinearFactorGraph() {
|
|
return *sharedNonlinearFactorGraph();
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
inline Values createValues() {
|
|
using symbol_shorthand::X;
|
|
using symbol_shorthand::L;
|
|
Values c;
|
|
c.insert(X(1), Point2(0.0, 0.0));
|
|
c.insert(X(2), Point2(1.5, 0.0));
|
|
c.insert(L(1), Point2(0.0, -1.0));
|
|
return c;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
inline VectorValues createVectorValues() {
|
|
using namespace impl;
|
|
VectorValues c = boost::assign::pair_list_of<Key, Vector>
|
|
(_l1_, Vector2(0.0, -1.0))
|
|
(_x1_, Vector2(0.0, 0.0))
|
|
(_x2_, Vector2(1.5, 0.0));
|
|
return c;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
inline boost::shared_ptr<const Values> sharedNoisyValues() {
|
|
using symbol_shorthand::X;
|
|
using symbol_shorthand::L;
|
|
boost::shared_ptr<Values> c(new Values);
|
|
c->insert(X(1), Point2(0.1, 0.1));
|
|
c->insert(X(2), Point2(1.4, 0.2));
|
|
c->insert(L(1), Point2(0.1, -1.1));
|
|
return c;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
inline Values createNoisyValues() {
|
|
return *sharedNoisyValues();
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
inline VectorValues createCorrectDelta() {
|
|
using symbol_shorthand::X;
|
|
using symbol_shorthand::L;
|
|
VectorValues c;
|
|
c.insert(L(1), Vector2(-0.1, 0.1));
|
|
c.insert(X(1), Vector2(-0.1, -0.1));
|
|
c.insert(X(2), Vector2(0.1, -0.2));
|
|
return c;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
inline VectorValues createZeroDelta() {
|
|
using symbol_shorthand::X;
|
|
using symbol_shorthand::L;
|
|
VectorValues c;
|
|
c.insert(L(1), Z_2x1);
|
|
c.insert(X(1), Z_2x1);
|
|
c.insert(X(2), Z_2x1);
|
|
return c;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
inline GaussianFactorGraph createGaussianFactorGraph() {
|
|
using symbol_shorthand::X;
|
|
using symbol_shorthand::L;
|
|
// Create empty graph
|
|
GaussianFactorGraph fg;
|
|
|
|
// linearized prior on x1: c[_x1_]+x1=0 i.e. x1=-c[_x1_]
|
|
fg += JacobianFactor(X(1), 10*I_2x2, -1.0*Vector::Ones(2));
|
|
|
|
// odometry between x1 and x2: x2-x1=[0.2;-0.1]
|
|
fg += JacobianFactor(X(1), -10*I_2x2, X(2), 10*I_2x2, Vector2(2.0, -1.0));
|
|
|
|
// measurement between x1 and l1: l1-x1=[0.0;0.2]
|
|
fg += JacobianFactor(X(1), -5*I_2x2, L(1), 5*I_2x2, Vector2(0.0, 1.0));
|
|
|
|
// measurement between x2 and l1: l1-x2=[-0.2;0.3]
|
|
fg += JacobianFactor(X(2), -5*I_2x2, L(1), 5*I_2x2, Vector2(-1.0, 1.5));
|
|
|
|
return fg;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/** create small Chordal Bayes Net x <- y
|
|
* x y d
|
|
* 1 1 9
|
|
* 1 5
|
|
*/
|
|
inline GaussianBayesNet createSmallGaussianBayesNet() {
|
|
using namespace impl;
|
|
Matrix R11 = (Matrix(1, 1) << 1.0).finished(), S12 = (Matrix(1, 1) << 1.0).finished();
|
|
Matrix R22 = (Matrix(1, 1) << 1.0).finished();
|
|
Vector d1(1), d2(1);
|
|
d1(0) = 9;
|
|
d2(0) = 5;
|
|
|
|
// define nodes and specify in reverse topological sort (i.e. parents last)
|
|
GaussianConditional::shared_ptr Px_y(new GaussianConditional(_x_, d1, R11, _y_, S12));
|
|
GaussianConditional::shared_ptr Py(new GaussianConditional(_y_, d2, R22));
|
|
GaussianBayesNet cbn;
|
|
cbn.push_back(Px_y);
|
|
cbn.push_back(Py);
|
|
|
|
return cbn;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Some nonlinear functions to optimize
|
|
/* ************************************************************************* */
|
|
namespace smallOptimize {
|
|
|
|
inline Point2 h(const Point2& v) {
|
|
return Point2(cos(v.x()), sin(v.y()));
|
|
}
|
|
|
|
inline Matrix H(const Point2& v) {
|
|
return (Matrix(2, 2) <<
|
|
-sin(v.x()), 0.0,
|
|
0.0, cos(v.y())).finished();
|
|
}
|
|
|
|
struct UnaryFactor: public gtsam::NoiseModelFactor1<Point2> {
|
|
|
|
Point2 z_;
|
|
|
|
UnaryFactor(const Point2& z, const SharedNoiseModel& model, Key key) :
|
|
gtsam::NoiseModelFactor1<Point2>(model, key), z_(z) {
|
|
}
|
|
|
|
Vector evaluateError(const Point2& x, boost::optional<Matrix&> A = boost::none) const {
|
|
if (A) *A = H(x);
|
|
return (h(x) - z_);
|
|
}
|
|
|
|
};
|
|
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
inline boost::shared_ptr<const NonlinearFactorGraph> sharedReallyNonlinearFactorGraph() {
|
|
using symbol_shorthand::X;
|
|
using symbol_shorthand::L;
|
|
boost::shared_ptr<NonlinearFactorGraph> fg(new NonlinearFactorGraph);
|
|
Point2 z(1.0, 0.0);
|
|
double sigma = 0.1;
|
|
boost::shared_ptr<smallOptimize::UnaryFactor> factor(
|
|
new smallOptimize::UnaryFactor(z, noiseModel::Isotropic::Sigma(2,sigma), X(1)));
|
|
fg->push_back(factor);
|
|
return fg;
|
|
}
|
|
|
|
inline NonlinearFactorGraph createReallyNonlinearFactorGraph() {
|
|
return *sharedReallyNonlinearFactorGraph();
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
inline std::pair<NonlinearFactorGraph, Values> createNonlinearSmoother(int T) {
|
|
using namespace impl;
|
|
using symbol_shorthand::X;
|
|
using symbol_shorthand::L;
|
|
|
|
// Create
|
|
NonlinearFactorGraph nlfg;
|
|
Values poses;
|
|
|
|
// prior on x1
|
|
Point2 x1(1.0, 0.0);
|
|
shared_nlf prior(new simulated2D::Prior(x1, sigma1_0, X(1)));
|
|
nlfg.push_back(prior);
|
|
poses.insert(X(1), x1);
|
|
|
|
for (int t = 2; t <= T; t++) {
|
|
// odometry between x_t and x_{t-1}
|
|
Point2 odo(1.0, 0.0);
|
|
shared_nlf odometry(new simulated2D::Odometry(odo, sigma1_0, X(t - 1), X(t)));
|
|
nlfg.push_back(odometry);
|
|
|
|
// measurement on x_t is like perfect GPS
|
|
Point2 xt(t, 0);
|
|
shared_nlf measurement(new simulated2D::Prior(xt, sigma1_0, X(t)));
|
|
nlfg.push_back(measurement);
|
|
|
|
// initial estimate
|
|
poses.insert(X(t), xt);
|
|
}
|
|
|
|
return std::make_pair(nlfg, poses);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
inline GaussianFactorGraph createSmoother(int T) {
|
|
NonlinearFactorGraph nlfg;
|
|
Values poses;
|
|
boost::tie(nlfg, poses) = createNonlinearSmoother(T);
|
|
|
|
return *nlfg.linearize(poses);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
inline GaussianFactorGraph createSimpleConstraintGraph() {
|
|
using namespace impl;
|
|
// create unary factor
|
|
// prior on _x_, mean = [1,-1], sigma=0.1
|
|
Matrix Ax = I_2x2;
|
|
Vector b1(2);
|
|
b1(0) = 1.0;
|
|
b1(1) = -1.0;
|
|
JacobianFactor::shared_ptr f1(new JacobianFactor(_x_, Ax, b1, sigma0_1));
|
|
|
|
// create binary constraint factor
|
|
// between _x_ and _y_, that is going to be the only factor on _y_
|
|
// |1 0||x_1| + |-1 0||y_1| = |0|
|
|
// |0 1||x_2| | 0 -1||y_2| |0|
|
|
Matrix Ax1 = I_2x2;
|
|
Matrix Ay1 = I_2x2 * -1;
|
|
Vector b2 = Vector2(0.0, 0.0);
|
|
JacobianFactor::shared_ptr f2(new JacobianFactor(_x_, Ax1, _y_, Ay1, b2,
|
|
constraintModel));
|
|
|
|
// construct the graph
|
|
GaussianFactorGraph fg;
|
|
fg.push_back(f1);
|
|
fg.push_back(f2);
|
|
|
|
return fg;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
inline VectorValues createSimpleConstraintValues() {
|
|
using namespace impl;
|
|
using symbol_shorthand::X;
|
|
using symbol_shorthand::L;
|
|
VectorValues config;
|
|
Vector v = Vector2(1.0, -1.0);
|
|
config.insert(_x_, v);
|
|
config.insert(_y_, v);
|
|
return config;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
inline GaussianFactorGraph createSingleConstraintGraph() {
|
|
using namespace impl;
|
|
// create unary factor
|
|
// prior on _x_, mean = [1,-1], sigma=0.1
|
|
Matrix Ax = I_2x2;
|
|
Vector b1(2);
|
|
b1(0) = 1.0;
|
|
b1(1) = -1.0;
|
|
//GaussianFactor::shared_ptr f1(new JacobianFactor(_x_, sigma0_1->Whiten(Ax), sigma0_1->whiten(b1), sigma0_1));
|
|
JacobianFactor::shared_ptr f1(new JacobianFactor(_x_, Ax, b1, sigma0_1));
|
|
|
|
// create binary constraint factor
|
|
// between _x_ and _y_, that is going to be the only factor on _y_
|
|
// |1 2||x_1| + |10 0||y_1| = |1|
|
|
// |2 1||x_2| |0 10||y_2| |2|
|
|
Matrix Ax1(2, 2);
|
|
Ax1(0, 0) = 1.0;
|
|
Ax1(0, 1) = 2.0;
|
|
Ax1(1, 0) = 2.0;
|
|
Ax1(1, 1) = 1.0;
|
|
Matrix Ay1 = I_2x2 * 10;
|
|
Vector b2 = Vector2(1.0, 2.0);
|
|
JacobianFactor::shared_ptr f2(new JacobianFactor(_x_, Ax1, _y_, Ay1, b2,
|
|
constraintModel));
|
|
|
|
// construct the graph
|
|
GaussianFactorGraph fg;
|
|
fg.push_back(f1);
|
|
fg.push_back(f2);
|
|
|
|
return fg;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
inline VectorValues createSingleConstraintValues() {
|
|
using namespace impl;
|
|
VectorValues config = boost::assign::pair_list_of<Key, Vector>
|
|
(_x_, Vector2(1.0, -1.0))
|
|
(_y_, Vector2(0.2, 0.1));
|
|
return config;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
inline GaussianFactorGraph createMultiConstraintGraph() {
|
|
using namespace impl;
|
|
// unary factor 1
|
|
Matrix A = I_2x2;
|
|
Vector b = Vector2(-2.0, 2.0);
|
|
JacobianFactor::shared_ptr lf1(new JacobianFactor(_x_, A, b, sigma0_1));
|
|
|
|
// constraint 1
|
|
Matrix A11(2, 2);
|
|
A11(0, 0) = 1.0;
|
|
A11(0, 1) = 2.0;
|
|
A11(1, 0) = 2.0;
|
|
A11(1, 1) = 1.0;
|
|
|
|
Matrix A12(2, 2);
|
|
A12(0, 0) = 10.0;
|
|
A12(0, 1) = 0.0;
|
|
A12(1, 0) = 0.0;
|
|
A12(1, 1) = 10.0;
|
|
|
|
Vector b1(2);
|
|
b1(0) = 1.0;
|
|
b1(1) = 2.0;
|
|
JacobianFactor::shared_ptr lc1(new JacobianFactor(_x_, A11, _y_, A12, b1,
|
|
constraintModel));
|
|
|
|
// constraint 2
|
|
Matrix A21(2, 2);
|
|
A21(0, 0) = 3.0;
|
|
A21(0, 1) = 4.0;
|
|
A21(1, 0) = -1.0;
|
|
A21(1, 1) = -2.0;
|
|
|
|
Matrix A22(2, 2);
|
|
A22(0, 0) = 1.0;
|
|
A22(0, 1) = 1.0;
|
|
A22(1, 0) = 1.0;
|
|
A22(1, 1) = 2.0;
|
|
|
|
Vector b2(2);
|
|
b2(0) = 3.0;
|
|
b2(1) = 4.0;
|
|
JacobianFactor::shared_ptr lc2(new JacobianFactor(_x_, A21, _z_, A22, b2,
|
|
constraintModel));
|
|
|
|
// construct the graph
|
|
GaussianFactorGraph fg;
|
|
fg.push_back(lf1);
|
|
fg.push_back(lc1);
|
|
fg.push_back(lc2);
|
|
|
|
return fg;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
inline VectorValues createMultiConstraintValues() {
|
|
using namespace impl;
|
|
VectorValues config = boost::assign::pair_list_of<Key, Vector>
|
|
(_x_, Vector2(-2.0, 2.0))
|
|
(_y_, Vector2(-0.1, 0.4))
|
|
(_z_, Vector2(-4.0, 5.0));
|
|
return config;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Create key for simulated planar graph
|
|
namespace impl {
|
|
inline Symbol key(size_t x, size_t y) {
|
|
using symbol_shorthand::X;
|
|
return X(1000*x+y);
|
|
}
|
|
} // \namespace impl
|
|
|
|
/* ************************************************************************* */
|
|
inline boost::tuple<GaussianFactorGraph, VectorValues> planarGraph(size_t N) {
|
|
using namespace impl;
|
|
|
|
// create empty graph
|
|
NonlinearFactorGraph nlfg;
|
|
|
|
// Create almost hard constraint on x11, sigma=0 will work for PCG not for normal
|
|
shared_nlf constraint(new simulated2D::Prior(Point2(1.0, 1.0), noiseModel::Isotropic::Sigma(2,1e-3), key(1,1)));
|
|
nlfg.push_back(constraint);
|
|
|
|
// Create horizontal constraints, 1...N*(N-1)
|
|
Point2 z1(1.0, 0.0); // move right
|
|
for (size_t x = 1; x < N; x++)
|
|
for (size_t y = 1; y <= N; y++) {
|
|
shared_nlf f(new simulated2D::Odometry(z1, noiseModel::Isotropic::Sigma(2,0.01), key(x, y), key(x + 1, y)));
|
|
nlfg.push_back(f);
|
|
}
|
|
|
|
// Create vertical constraints, N*(N-1)+1..2*N*(N-1)
|
|
Point2 z2(0.0, 1.0); // move up
|
|
for (size_t x = 1; x <= N; x++)
|
|
for (size_t y = 1; y < N; y++) {
|
|
shared_nlf f(new simulated2D::Odometry(z2, noiseModel::Isotropic::Sigma(2,0.01), key(x, y), key(x, y + 1)));
|
|
nlfg.push_back(f);
|
|
}
|
|
|
|
// Create linearization and ground xtrue config
|
|
Values zeros;
|
|
for (size_t x = 1; x <= N; x++)
|
|
for (size_t y = 1; y <= N; y++)
|
|
zeros.insert(key(x, y), Point2(0,0));
|
|
VectorValues xtrue;
|
|
for (size_t x = 1; x <= N; x++)
|
|
for (size_t y = 1; y <= N; y++)
|
|
xtrue.insert(key(x, y), Point2((double)x, (double)y));
|
|
|
|
// linearize around zero
|
|
boost::shared_ptr<GaussianFactorGraph> gfg = nlfg.linearize(zeros);
|
|
return boost::make_tuple(*gfg, xtrue);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
inline Ordering planarOrdering(size_t N) {
|
|
Ordering ordering;
|
|
for (size_t y = N; y >= 1; y--)
|
|
for (size_t x = N; x >= 1; x--)
|
|
ordering.push_back(impl::key(x, y));
|
|
return ordering;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
inline std::pair<GaussianFactorGraph, GaussianFactorGraph > splitOffPlanarTree(size_t N,
|
|
const GaussianFactorGraph& original) {
|
|
GaussianFactorGraph T, C;
|
|
|
|
// Add the x11 constraint to the tree
|
|
T.push_back(original[0]);
|
|
|
|
// Add all horizontal constraints to the tree
|
|
size_t i = 1;
|
|
for (size_t x = 1; x < N; x++)
|
|
for (size_t y = 1; y <= N; y++, i++)
|
|
T.push_back(original[i]);
|
|
|
|
// Add first vertical column of constraints to T, others to C
|
|
for (size_t x = 1; x <= N; x++)
|
|
for (size_t y = 1; y < N; y++, i++)
|
|
if (x == 1)
|
|
T.push_back(original[i]);
|
|
else
|
|
C.push_back(original[i]);
|
|
|
|
return std::make_pair(T, C);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
|
|
} // \namespace example
|
|
} // \namespace gtsam
|