gtsam/gtsam_unstable/dynamics/PoseRTV.cpp

242 lines
8.0 KiB
C++

/**
* @file PoseRTV.cpp
* @author Alex Cunningham
*/
#include <gtsam_unstable/dynamics/PoseRTV.h>
#include <gtsam/geometry/Pose2.h>
#include <gtsam/base/Vector.h>
namespace gtsam {
using namespace std;
static const Vector kGravity = Vector::Unit(3,2)*9.81;
/* ************************************************************************* */
double bound(double a, double min, double max) {
if (a < min) return min;
else if (a > max) return max;
else return a;
}
/* ************************************************************************* */
PoseRTV::PoseRTV(double roll, double pitch, double yaw, double x, double y,
double z, double vx, double vy, double vz) :
Base(Pose3(Rot3::RzRyRx(roll, pitch, yaw), Point3(x, y, z)),
Velocity3(vx, vy, vz)) {
}
/* ************************************************************************* */
PoseRTV::PoseRTV(const Vector& rtv) :
Base(Pose3(Rot3::RzRyRx(rtv.head(3)), Point3(rtv.segment(3, 3))),
Velocity3(rtv.tail(3))) {
}
/* ************************************************************************* */
Vector PoseRTV::vector() const {
Vector rtv(9);
rtv.head(3) = rotation().xyz();
rtv.segment(3,3) = translation();
rtv.tail(3) = velocity();
return rtv;
}
/* ************************************************************************* */
bool PoseRTV::equals(const PoseRTV& other, double tol) const {
return pose().equals(other.pose(), tol)
&& equal_with_abs_tol(velocity(), other.velocity(), tol);
}
/* ************************************************************************* */
void PoseRTV::print(const string& s) const {
cout << s << ":" << endl;
gtsam::print((Vector)R().xyz(), " R:rpy");
cout << " T" << t().transpose() << endl;
gtsam::print((Vector)velocity(), " V");
}
/* ************************************************************************* */
PoseRTV PoseRTV::planarDynamics(double vel_rate, double heading_rate,
double max_accel, double dt) const {
// split out initial state
const Rot3& r1 = R();
const Velocity3& v1 = v();
// Update vehicle heading
Rot3 r2 = r1.retract((Vector(3) << 0.0, 0.0, heading_rate * dt).finished());
const double yaw2 = r2.ypr()(0);
// Update vehicle position
const double mag_v1 = v1.norm();
// FIXME: this doesn't account for direction in velocity bounds
double dv = bound(vel_rate - mag_v1, - (max_accel * dt), max_accel * dt);
double mag_v2 = mag_v1 + dv;
Velocity3 v2 = mag_v2 * Velocity3(cos(yaw2), sin(yaw2), 0.0);
Point3 t2 = translationIntegration(r2, v2, dt);
return PoseRTV(r2, t2, v2);
}
/* ************************************************************************* */
PoseRTV PoseRTV::flyingDynamics(
double pitch_rate, double heading_rate, double lift_control, double dt) const {
// split out initial state
const Rot3& r1 = R();
const Velocity3& v1 = v();
// Update vehicle heading (and normalise yaw)
Vector rot_rates = (Vector(3) << 0.0, pitch_rate, heading_rate).finished();
Rot3 r2 = r1.retract(rot_rates*dt);
// Work out dynamics on platform
const double thrust = 50.0;
const double lift = 50.0;
const double drag = 0.1;
double yaw2 = r2.yaw();
double pitch2 = r2.pitch();
double forward_accel = -thrust * sin(pitch2); // r2, pitch (in global frame?) controls forward force
double loss_lift = lift*fabs(sin(pitch2));
Rot3 yaw_correction_bn = Rot3::Yaw(yaw2);
Point3 forward(forward_accel, 0.0, 0.0);
Vector Acc_n =
yaw_correction_bn.rotate(forward) // applies locally forward force in the global frame
- drag * (Vector(3) << v1.x(), v1.y(), 0.0).finished() // drag term dependent on v1
+ Vector::Unit(3,2)*(loss_lift - lift_control); // falling due to lift lost from pitch
// Update Vehicle Position and Velocity
Velocity3 v2 = v1 + Velocity3(Acc_n * dt);
Point3 t2 = translationIntegration(r2, v2, dt);
return PoseRTV(r2, t2, v2);
}
/* ************************************************************************* */
PoseRTV PoseRTV::generalDynamics(
const Vector& accel, const Vector& gyro, double dt) const {
// Integrate Attitude Equations
Rot3 r2 = rotation().retract(gyro * dt);
// Integrate Velocity Equations
Velocity3 v2 = velocity() + Velocity3(dt * (r2.matrix() * accel + kGravity));
// Integrate Position Equations
Point3 t2 = translationIntegration(r2, v2, dt);
return PoseRTV(t2, r2, v2);
}
/* ************************************************************************* */
Vector6 PoseRTV::imuPrediction(const PoseRTV& x2, double dt) const {
// split out states
const Rot3 &r1 = R(), &r2 = x2.R();
const Velocity3 &v1 = v(), &v2 = x2.v();
Vector6 imu;
// acceleration
Vector3 accel = (v2-v1) / dt;
imu.head<3>() = r2.transpose() * (accel - kGravity);
// rotation rates
// just using euler angles based on matlab code
// FIXME: this is silly - we shouldn't use differences in Euler angles
Matrix Enb = RRTMnb(r1);
Vector3 euler1 = r1.xyz(), euler2 = r2.xyz();
Vector3 dR = euler2 - euler1;
// normalize yaw in difference (as per Mitch's code)
dR(2) = Rot2::fromAngle(dR(2)).theta();
dR /= dt;
imu.tail<3>() = Enb * dR;
// imu.tail(3) = r1.transpose() * dR;
return imu;
}
/* ************************************************************************* */
Point3 PoseRTV::translationIntegration(const Rot3& r2, const Velocity3& v2, double dt) const {
// predict point for constraint
// NOTE: uses simple Euler approach for prediction
Point3 pred_t2 = t() + Point3(v2 * dt);
return pred_t2;
}
/* ************************************************************************* */
double PoseRTV::range(const PoseRTV& other,
OptionalJacobian<1,9> H1, OptionalJacobian<1,9> H2) const {
Matrix36 D_t1_pose, D_t2_other;
const Point3 t1 = pose().translation(H1 ? &D_t1_pose : 0);
const Point3 t2 = other.pose().translation(H2 ? &D_t2_other : 0);
Matrix13 D_d_t1, D_d_t2;
double d = distance3(t1, t2, H1 ? &D_d_t1 : 0, H2 ? &D_d_t2 : 0);
if (H1) *H1 << D_d_t1 * D_t1_pose, 0,0,0;
if (H2) *H2 << D_d_t2 * D_t2_other, 0,0,0;
return d;
}
/* ************************************************************************* */
PoseRTV PoseRTV::transformed_from(const Pose3& trans, ChartJacobian Dglobal,
OptionalJacobian<9, 6> Dtrans) const {
// Pose3 transform is just compose
Matrix6 D_newpose_trans, D_newpose_pose;
Pose3 newpose = trans.compose(pose(), D_newpose_trans, D_newpose_pose);
// Note that we rotate the velocity
Matrix3 D_newvel_R, D_newvel_v;
Velocity3 newvel = trans.rotation().rotate(Point3(velocity()), D_newvel_R, D_newvel_v);
if (Dglobal) {
Dglobal->setZero();
Dglobal->topLeftCorner<6,6>() = D_newpose_pose;
Dglobal->bottomRightCorner<3,3>() = D_newvel_v;
}
if (Dtrans) {
Dtrans->setZero();
Dtrans->topLeftCorner<6,6>() = D_newpose_trans;
Dtrans->bottomLeftCorner<3,3>() = D_newvel_R;
}
return PoseRTV(newpose, newvel);
}
/* ************************************************************************* */
Matrix PoseRTV::RRTMbn(const Vector3& euler) {
assert(euler.size() == 3);
const double s1 = sin(euler.x()), c1 = cos(euler.x());
const double t2 = tan(euler.y()), c2 = cos(euler.y());
Matrix Ebn(3,3);
Ebn << 1.0, s1 * t2, c1 * t2,
0.0, c1, -s1,
0.0, s1 / c2, c1 / c2;
return Ebn;
}
/* ************************************************************************* */
Matrix PoseRTV::RRTMbn(const Rot3& att) {
return PoseRTV::RRTMbn(att.rpy());
}
/* ************************************************************************* */
Matrix PoseRTV::RRTMnb(const Vector3& euler) {
Matrix Enb(3,3);
const double s1 = sin(euler.x()), c1 = cos(euler.x());
const double s2 = sin(euler.y()), c2 = cos(euler.y());
Enb << 1.0, 0.0, -s2,
0.0, c1, s1*c2,
0.0, -s1, c1*c2;
return Enb;
}
/* ************************************************************************* */
Matrix PoseRTV::RRTMnb(const Rot3& att) {
return PoseRTV::RRTMnb(att.rpy());
}
/* ************************************************************************* */
} // \namespace gtsam