gtsam/gtsam/slam/tests/testEssentialMatrixFactor.cpp

537 lines
18 KiB
C++

/*
* @file testEssentialMatrixFactor.cpp
* @brief Test EssentialMatrixFactor class
* @author Frank Dellaert
* @date December 17, 2013
*/
#include <gtsam/slam/EssentialMatrixFactor.h>
#include <gtsam/slam/dataset.h>
#include <gtsam/nonlinear/expressionTesting.h>
#include <gtsam/nonlinear/ExpressionFactor.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/geometry/CalibratedCamera.h>
#include <gtsam/base/Testable.h>
#include <gtsam/base/numericalDerivative.h>
#include <CppUnitLite/TestHarness.h>
using namespace std;
using namespace gtsam;
// Noise model for first type of factor is evaluating algebraic error
noiseModel::Isotropic::shared_ptr model1 = noiseModel::Isotropic::Sigma(1,
0.01);
// Noise model for second type of factor is evaluating pixel coordinates
noiseModel::Unit::shared_ptr model2 = noiseModel::Unit::Create(2);
// The rotation between body and camera is:
gtsam::Point3 bX(1, 0, 0), bY(0, 1, 0), bZ(0, 0, 1);
gtsam::Rot3 cRb = gtsam::Rot3(bX, bZ, -bY).inverse();
namespace example1 {
const string filename = findExampleDataFile("5pointExample1.txt");
SfM_data data;
bool readOK = readBAL(filename, data);
Rot3 c1Rc2 = data.cameras[1].pose().rotation();
Point3 c1Tc2 = data.cameras[1].pose().translation();
PinholeCamera<Cal3_S2> camera2(data.cameras[1].pose(), Cal3_S2());
Rot3 trueRotation(c1Rc2);
Unit3 trueDirection(c1Tc2);
EssentialMatrix trueE(trueRotation, trueDirection);
double baseline = 0.1; // actual baseline of the camera
Point2 pA(size_t i) {
return data.tracks[i].measurements[0].second;
}
Point2 pB(size_t i) {
return data.tracks[i].measurements[1].second;
}
Vector vA(size_t i) {
return EssentialMatrix::Homogeneous(pA(i));
}
Vector vB(size_t i) {
return EssentialMatrix::Homogeneous(pB(i));
}
//*************************************************************************
TEST (EssentialMatrixFactor, testData) {
CHECK(readOK);
// Check E matrix
Matrix expected(3, 3);
expected << 0, 0, 0, 0, 0, -0.1, 0.1, 0, 0;
Matrix aEb_matrix = skewSymmetric(c1Tc2.x(), c1Tc2.y(), c1Tc2.z())
* c1Rc2.matrix();
EXPECT(assert_equal(expected, aEb_matrix, 1e-8));
// Check some projections
EXPECT(assert_equal(Point2(0, 0), pA(0), 1e-8));
EXPECT(assert_equal(Point2(0, 0.1), pB(0), 1e-8));
EXPECT(assert_equal(Point2(0, -1), pA(4), 1e-8));
EXPECT(assert_equal(Point2(-1, 0.2), pB(4), 1e-8));
// Check homogeneous version
EXPECT(assert_equal(Vector3(-1, 0.2, 1), vB(4), 1e-8));
// Check epipolar constraint
for (size_t i = 0; i < 5; i++)
EXPECT_DOUBLES_EQUAL(0, vA(i).transpose() * aEb_matrix * vB(i), 1e-8);
// Check epipolar constraint
for (size_t i = 0; i < 5; i++)
EXPECT_DOUBLES_EQUAL(0, trueE.error(vA(i), vB(i)), 1e-7);
}
//*************************************************************************
TEST (EssentialMatrixFactor, factor) {
Key key(1);
for (size_t i = 0; i < 5; i++) {
EssentialMatrixFactor factor(key, pA(i), pB(i), model1);
// Check evaluation
Vector expected(1);
expected << 0;
Matrix Hactual;
Vector actual = factor.evaluateError(trueE, Hactual);
EXPECT(assert_equal(expected, actual, 1e-7));
// Use numerical derivatives to calculate the expected Jacobian
Matrix Hexpected;
typedef Eigen::Matrix<double,1,1> Vector1;
Hexpected = numericalDerivative11<Vector1, EssentialMatrix>(
boost::bind(&EssentialMatrixFactor::evaluateError, &factor, _1,
boost::none), trueE);
// Verify the Jacobian is correct
EXPECT(assert_equal(Hexpected, Hactual, 1e-8));
}
}
//*************************************************************************
TEST(EssentialMatrixFactor, ExpressionFactor) {
Key key(1);
for (size_t i = 0; i < 5; i++) {
boost::function<double(const EssentialMatrix&, OptionalJacobian<1, 5>)> f =
boost::bind(&EssentialMatrix::error, _1, vA(i), vB(i), _2);
Expression<EssentialMatrix> E_(key); // leaf expression
Expression<double> expr(f, E_); // unary expression
// Test the derivatives using Paul's magic
Values values;
values.insert(key, trueE);
EXPECT_CORRECT_EXPRESSION_JACOBIANS(expr, values, 1e-5, 1e-9);
// Create the factor
ExpressionFactor<double> factor(model1, 0, expr);
// Check evaluation
Vector expected(1);
expected << 0;
vector<Matrix> Hactual(1);
Vector actual = factor.unwhitenedError(values, Hactual);
EXPECT(assert_equal(expected, actual, 1e-7));
}
}
//*************************************************************************
TEST(EssentialMatrixFactor, ExpressionFactorRotationOnly) {
Key key(1);
for (size_t i = 0; i < 5; i++) {
boost::function<double(const EssentialMatrix&, OptionalJacobian<1, 5>)> f =
boost::bind(&EssentialMatrix::error, _1, vA(i), vB(i), _2);
boost::function<EssentialMatrix(const Rot3&, const Unit3&, OptionalJacobian<5, 3>,
OptionalJacobian<5, 2>)> g;
Expression<Rot3> R_(key);
Expression<Unit3> d_(trueDirection);
Expression<EssentialMatrix> E_(&EssentialMatrix::FromRotationAndDirection, R_, d_);
Expression<double> expr(f, E_);
// Test the derivatives using Paul's magic
Values values;
values.insert(key, trueRotation);
EXPECT_CORRECT_EXPRESSION_JACOBIANS(expr, values, 1e-5, 1e-9);
// Create the factor
ExpressionFactor<double> factor(model1, 0, expr);
// Check evaluation
Vector expected(1);
expected << 0;
vector<Matrix> Hactual(1);
Vector actual = factor.unwhitenedError(values, Hactual);
EXPECT(assert_equal(expected, actual, 1e-7));
}
}
//*************************************************************************
TEST (EssentialMatrixFactor, minimization) {
// Here we want to optimize directly on essential matrix constraints
// Yi Ma's algorithm (Ma01ijcv) is a bit cumbersome to implement,
// but GTSAM does the equivalent anyway, provided we give the right
// factors. In this case, the factors are the constraints.
// We start with a factor graph and add constraints to it
// Noise sigma is 1cm, assuming metric measurements
NonlinearFactorGraph graph;
for (size_t i = 0; i < 5; i++)
graph.add(EssentialMatrixFactor(1, pA(i), pB(i), model1));
// Check error at ground truth
Values truth;
truth.insert(1, trueE);
EXPECT_DOUBLES_EQUAL(0, graph.error(truth), 1e-8);
// Check error at initial estimate
Values initial;
EssentialMatrix initialE = trueE.retract(
(Vector(5) << 0.1, -0.1, 0.1, 0.1, -0.1).finished());
initial.insert(1, initialE);
#if defined(GTSAM_ROT3_EXPMAP) || defined(GTSAM_USE_QUATERNIONS)
EXPECT_DOUBLES_EQUAL(643.26, graph.error(initial), 1e-2);
#else
EXPECT_DOUBLES_EQUAL(639.84, graph.error(initial), 1e-2);
#endif
// Optimize
LevenbergMarquardtParams parameters;
LevenbergMarquardtOptimizer optimizer(graph, initial, parameters);
Values result = optimizer.optimize();
// Check result
EssentialMatrix actual = result.at<EssentialMatrix>(1);
EXPECT(assert_equal(trueE, actual, 1e-1));
// Check error at result
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-4);
// Check errors individually
for (size_t i = 0; i < 5; i++)
EXPECT_DOUBLES_EQUAL(0, actual.error(vA(i), vB(i)), 1e-6);
}
//*************************************************************************
TEST (EssentialMatrixFactor2, factor) {
for (size_t i = 0; i < 5; i++) {
EssentialMatrixFactor2 factor(100, i, pA(i), pB(i), model2);
// Check evaluation
Point3 P1 = data.tracks[i].p, P2 = data.cameras[1].pose().transform_to(P1);
const Point2 pi = PinholeBase::Project(P2);
Point2 expected(pi - pB(i));
Matrix Hactual1, Hactual2;
double d(baseline / P1.z());
Vector actual = factor.evaluateError(trueE, d, Hactual1, Hactual2);
EXPECT(assert_equal(expected, actual, 1e-7));
// Use numerical derivatives to calculate the expected Jacobian
Matrix Hexpected1, Hexpected2;
boost::function<Vector(const EssentialMatrix&, double)> f = boost::bind(
&EssentialMatrixFactor2::evaluateError, &factor, _1, _2, boost::none,
boost::none);
Hexpected1 = numericalDerivative21<Vector2, EssentialMatrix, double>(f, trueE, d);
Hexpected2 = numericalDerivative22<Vector2, EssentialMatrix, double>(f, trueE, d);
// Verify the Jacobian is correct
EXPECT(assert_equal(Hexpected1, Hactual1, 1e-8));
EXPECT(assert_equal(Hexpected2, Hactual2, 1e-8));
}
}
//*************************************************************************
TEST (EssentialMatrixFactor2, minimization) {
// Here we want to optimize for E and inverse depths at the same time
// We start with a factor graph and add constraints to it
// Noise sigma is 1cm, assuming metric measurements
NonlinearFactorGraph graph;
for (size_t i = 0; i < 5; i++)
graph.add(EssentialMatrixFactor2(100, i, pA(i), pB(i), model2));
// Check error at ground truth
Values truth;
truth.insert(100, trueE);
for (size_t i = 0; i < 5; i++) {
Point3 P1 = data.tracks[i].p;
truth.insert(i, double(baseline / P1.z()));
}
EXPECT_DOUBLES_EQUAL(0, graph.error(truth), 1e-8);
// Optimize
LevenbergMarquardtParams parameters;
// parameters.setVerbosity("ERROR");
LevenbergMarquardtOptimizer optimizer(graph, truth, parameters);
Values result = optimizer.optimize();
// Check result
EssentialMatrix actual = result.at<EssentialMatrix>(100);
EXPECT(assert_equal(trueE, actual, 1e-1));
for (size_t i = 0; i < 5; i++)
EXPECT_DOUBLES_EQUAL(truth.at<double>(i), result.at<double>(i), 1e-1);
// Check error at result
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-4);
}
//*************************************************************************
// Below we want to optimize for an essential matrix specified in a
// body coordinate frame B which is rotated with respect to the camera
// frame C, via the rotation bRc.
// The "true E" in the body frame is then
EssentialMatrix bodyE = cRb.inverse() * trueE;
//*************************************************************************
TEST (EssentialMatrixFactor3, factor) {
for (size_t i = 0; i < 5; i++) {
EssentialMatrixFactor3 factor(100, i, pA(i), pB(i), cRb, model2);
// Check evaluation
Point3 P1 = data.tracks[i].p;
const Point2 pi = camera2.project(P1);
Point2 expected(pi - pB(i));
Matrix Hactual1, Hactual2;
double d(baseline / P1.z());
Vector actual = factor.evaluateError(bodyE, d, Hactual1, Hactual2);
EXPECT(assert_equal(expected, actual, 1e-7));
// Use numerical derivatives to calculate the expected Jacobian
Matrix Hexpected1, Hexpected2;
boost::function<Vector(const EssentialMatrix&, double)> f = boost::bind(
&EssentialMatrixFactor3::evaluateError, &factor, _1, _2, boost::none,
boost::none);
Hexpected1 = numericalDerivative21<Vector2, EssentialMatrix, double>(f, bodyE, d);
Hexpected2 = numericalDerivative22<Vector2, EssentialMatrix, double>(f, bodyE, d);
// Verify the Jacobian is correct
EXPECT(assert_equal(Hexpected1, Hactual1, 1e-8));
EXPECT(assert_equal(Hexpected2, Hactual2, 1e-8));
}
}
//*************************************************************************
TEST (EssentialMatrixFactor3, minimization) {
// As before, we start with a factor graph and add constraints to it
NonlinearFactorGraph graph;
for (size_t i = 0; i < 5; i++)
// but now we specify the rotation bRc
graph.add(EssentialMatrixFactor3(100, i, pA(i), pB(i), cRb, model2));
// Check error at ground truth
Values truth;
truth.insert(100, bodyE);
for (size_t i = 0; i < 5; i++) {
Point3 P1 = data.tracks[i].p;
truth.insert(i, double(baseline / P1.z()));
}
EXPECT_DOUBLES_EQUAL(0, graph.error(truth), 1e-8);
// Optimize
LevenbergMarquardtParams parameters;
// parameters.setVerbosity("ERROR");
LevenbergMarquardtOptimizer optimizer(graph, truth, parameters);
Values result = optimizer.optimize();
// Check result
EssentialMatrix actual = result.at<EssentialMatrix>(100);
EXPECT(assert_equal(bodyE, actual, 1e-1));
for (size_t i = 0; i < 5; i++)
EXPECT_DOUBLES_EQUAL(truth.at<double>(i), result.at<double>(i), 1e-1);
// Check error at result
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-4);
}
} // namespace example1
//*************************************************************************
namespace example2 {
const string filename = findExampleDataFile("5pointExample2.txt");
SfM_data data;
bool readOK = readBAL(filename, data);
Rot3 aRb = data.cameras[1].pose().rotation();
Point3 aTb = data.cameras[1].pose().translation();
EssentialMatrix trueE(aRb, Unit3(aTb));
double baseline = 10; // actual baseline of the camera
Point2 pA(size_t i) {
return data.tracks[i].measurements[0].second;
}
Point2 pB(size_t i) {
return data.tracks[i].measurements[1].second;
}
boost::shared_ptr<Cal3Bundler> //
K = boost::make_shared<Cal3Bundler>(500, 0, 0);
PinholeCamera<Cal3Bundler> camera2(data.cameras[1].pose(), *K);
Vector vA(size_t i) {
Point2 xy = K->calibrate(pA(i));
return EssentialMatrix::Homogeneous(xy);
}
Vector vB(size_t i) {
Point2 xy = K->calibrate(pB(i));
return EssentialMatrix::Homogeneous(xy);
}
//*************************************************************************
TEST (EssentialMatrixFactor, extraMinimization) {
// Additional test with camera moving in positive X direction
NonlinearFactorGraph graph;
for (size_t i = 0; i < 5; i++)
graph.add(EssentialMatrixFactor(1, pA(i), pB(i), model1, K));
// Check error at ground truth
Values truth;
truth.insert(1, trueE);
EXPECT_DOUBLES_EQUAL(0, graph.error(truth), 1e-8);
// Check error at initial estimate
Values initial;
EssentialMatrix initialE = trueE.retract(
(Vector(5) << 0.1, -0.1, 0.1, 0.1, -0.1).finished());
initial.insert(1, initialE);
#if defined(GTSAM_ROT3_EXPMAP) || defined(GTSAM_USE_QUATERNIONS)
EXPECT_DOUBLES_EQUAL(643.26, graph.error(initial), 1e-2);
#else
EXPECT_DOUBLES_EQUAL(639.84, graph.error(initial), 1e-2);
#endif
// Optimize
LevenbergMarquardtParams parameters;
LevenbergMarquardtOptimizer optimizer(graph, initial, parameters);
Values result = optimizer.optimize();
// Check result
EssentialMatrix actual = result.at<EssentialMatrix>(1);
EXPECT(assert_equal(trueE, actual, 1e-1));
// Check error at result
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-4);
// Check errors individually
for (size_t i = 0; i < 5; i++)
EXPECT_DOUBLES_EQUAL(0, actual.error(vA(i), vB(i)), 1e-6);
}
//*************************************************************************
TEST (EssentialMatrixFactor2, extraTest) {
for (size_t i = 0; i < 5; i++) {
EssentialMatrixFactor2 factor(100, i, pA(i), pB(i), model2, K);
// Check evaluation
Point3 P1 = data.tracks[i].p;
const Point2 pi = camera2.project(P1);
Point2 expected(pi - pB(i));
Matrix Hactual1, Hactual2;
double d(baseline / P1.z());
Vector actual = factor.evaluateError(trueE, d, Hactual1, Hactual2);
EXPECT(assert_equal(expected, actual, 1e-7));
// Use numerical derivatives to calculate the expected Jacobian
Matrix Hexpected1, Hexpected2;
boost::function<Vector(const EssentialMatrix&, double)> f = boost::bind(
&EssentialMatrixFactor2::evaluateError, &factor, _1, _2, boost::none,
boost::none);
Hexpected1 = numericalDerivative21<Vector2, EssentialMatrix, double>(f, trueE, d);
Hexpected2 = numericalDerivative22<Vector2, EssentialMatrix, double>(f, trueE, d);
// Verify the Jacobian is correct
EXPECT(assert_equal(Hexpected1, Hactual1, 1e-6));
EXPECT(assert_equal(Hexpected2, Hactual2, 1e-8));
}
}
//*************************************************************************
TEST (EssentialMatrixFactor2, extraMinimization) {
// Additional test with camera moving in positive X direction
// We start with a factor graph and add constraints to it
// Noise sigma is 1, assuming pixel measurements
NonlinearFactorGraph graph;
for (size_t i = 0; i < data.number_tracks(); i++)
graph.add(EssentialMatrixFactor2(100, i, pA(i), pB(i), model2, K));
// Check error at ground truth
Values truth;
truth.insert(100, trueE);
for (size_t i = 0; i < data.number_tracks(); i++) {
Point3 P1 = data.tracks[i].p;
truth.insert(i, double(baseline / P1.z()));
}
EXPECT_DOUBLES_EQUAL(0, graph.error(truth), 1e-8);
// Optimize
LevenbergMarquardtParams parameters;
// parameters.setVerbosity("ERROR");
LevenbergMarquardtOptimizer optimizer(graph, truth, parameters);
Values result = optimizer.optimize();
// Check result
EssentialMatrix actual = result.at<EssentialMatrix>(100);
EXPECT(assert_equal(trueE, actual, 1e-1));
for (size_t i = 0; i < data.number_tracks(); i++)
EXPECT_DOUBLES_EQUAL(truth.at<double>(i), result.at<double>(i), 1e-1);
// Check error at result
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-4);
}
//*************************************************************************
TEST (EssentialMatrixFactor3, extraTest) {
// The "true E" in the body frame is
EssentialMatrix bodyE = cRb.inverse() * trueE;
for (size_t i = 0; i < 5; i++) {
EssentialMatrixFactor3 factor(100, i, pA(i), pB(i), cRb, model2, K);
// Check evaluation
Point3 P1 = data.tracks[i].p;
const Point2 pi = camera2.project(P1);
Point2 expected(pi - pB(i));
Matrix Hactual1, Hactual2;
double d(baseline / P1.z());
Vector actual = factor.evaluateError(bodyE, d, Hactual1, Hactual2);
EXPECT(assert_equal(expected, actual, 1e-7));
// Use numerical derivatives to calculate the expected Jacobian
Matrix Hexpected1, Hexpected2;
boost::function<Vector(const EssentialMatrix&, double)> f = boost::bind(
&EssentialMatrixFactor3::evaluateError, &factor, _1, _2, boost::none,
boost::none);
Hexpected1 = numericalDerivative21<Vector2, EssentialMatrix, double>(f, bodyE, d);
Hexpected2 = numericalDerivative22<Vector2, EssentialMatrix, double>(f, bodyE, d);
// Verify the Jacobian is correct
EXPECT(assert_equal(Hexpected1, Hactual1, 1e-6));
EXPECT(assert_equal(Hexpected2, Hactual2, 1e-8));
}
}
} // namespace example2
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */