gtsam/python/gtsam/examples/Pose3ISAM2Example.py

209 lines
9.4 KiB
Python

"""
GTSAM Copyright 2010-2018, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
See LICENSE for the license information
Pose SLAM example using iSAM2 in 3D space.
Author: Jerred Chen
Modeled after:
- VisualISAM2Example by: Duy-Nguyen Ta (C++), Frank Dellaert (Python)
- Pose2SLAMExample by: Alex Cunningham (C++), Kevin Deng & Frank Dellaert (Python)
"""
from typing import List
import matplotlib.pyplot as plt
import numpy as np
import gtsam
import gtsam.utils.plot as gtsam_plot
def report_on_progress(graph: gtsam.NonlinearFactorGraph, current_estimate: gtsam.Values,
key: int):
"""Print and plot incremental progress of the robot for 2D Pose SLAM using iSAM2."""
# Print the current estimates computed using iSAM2.
print("*"*50 + f"\nInference after State {key+1}:\n")
print(current_estimate)
# Compute the marginals for all states in the graph.
marginals = gtsam.Marginals(graph, current_estimate)
# Plot the newly updated iSAM2 inference.
fig = plt.figure(0)
axes = fig.gca(projection='3d')
plt.cla()
i = 1
while current_estimate.exists(i):
gtsam_plot.plot_pose3(0, current_estimate.atPose3(i), 10,
marginals.marginalCovariance(i))
i += 1
axes.set_xlim3d(-30, 45)
axes.set_ylim3d(-30, 45)
axes.set_zlim3d(-30, 45)
plt.pause(1)
def create_poses() -> List[gtsam.Pose3]:
"""Creates ground truth poses of the robot."""
P0 = np.array([[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]])
P1 = np.array([[0, -1, 0, 15],
[1, 0, 0, 15],
[0, 0, 1, 20],
[0, 0, 0, 1]])
P2 = np.array([[np.cos(np.pi/4), 0, np.sin(np.pi/4), 30],
[0, 1, 0, 30],
[-np.sin(np.pi/4), 0, np.cos(np.pi/4), 30],
[0, 0, 0, 1]])
P3 = np.array([[0, 1, 0, 30],
[0, 0, -1, 0],
[-1, 0, 0, -15],
[0, 0, 0, 1]])
P4 = np.array([[-1, 0, 0, 0],
[0, -1, 0, -10],
[0, 0, 1, -10],
[0, 0, 0, 1]])
P5 = P0[:]
return [gtsam.Pose3(P0), gtsam.Pose3(P1), gtsam.Pose3(P2),
gtsam.Pose3(P3), gtsam.Pose3(P4), gtsam.Pose3(P5)]
def determine_loop_closure(odom_tf: gtsam.Pose3, current_estimate: gtsam.Values,
key: int, xyz_tol=0.6, rot_tol=17) -> int:
"""Simple brute force approach which iterates through previous states
and checks for loop closure.
Args:
odom_tf: The noisy odometry transformation measurement in the body frame.
current_estimate: The current estimates computed by iSAM2.
key: Key corresponding to the current state estimate of the robot.
xyz_tol: Optional argument for the translational tolerance, in meters.
rot_tol: Optional argument for the rotational tolerance, in degrees.
Returns:
k: The key of the state which is helping add the loop closure constraint.
If loop closure is not found, then None is returned.
"""
if current_estimate:
prev_est = current_estimate.atPose3(key+1)
curr_est = prev_est.compose(odom_tf)
for k in range(1, key+1):
pose = current_estimate.atPose3(k)
if (abs(pose.matrix()[:3,:3] - curr_est.matrix()[:3,:3]) <= rot_tol*np.pi/180).all() and \
(abs(pose.matrix()[:3,3] - curr_est.matrix()[:3,3]) <= xyz_tol).all():
return k
def Pose3_ISAM2_example():
"""Perform 3D SLAM given ground truth poses as well as simple
loop closure detection."""
plt.ion()
# Declare the 3D translational standard deviations of the prior factor's Gaussian model, in meters.
prior_xyz_sigma = 0.3
# Declare the 3D rotational standard deviations of the prior factor's Gaussian model, in degrees.
prior_rpy_sigma = 5
# Declare the 3D translational standard deviations of the odometry factor's Gaussian model, in meters.
odometry_xyz_sigma = 0.2
# Declare the 3D rotational standard deviations of the odometry factor's Gaussian model, in degrees.
odometry_rpy_sigma = 5
# Although this example only uses linear measurements and Gaussian noise models, it is important
# to note that iSAM2 can be utilized to its full potential during nonlinear optimization. This example
# simply showcases how iSAM2 may be applied to a Pose2 SLAM problem.
PRIOR_NOISE = gtsam.noiseModel.Diagonal.Sigmas(np.array([prior_rpy_sigma*np.pi/180,
prior_rpy_sigma*np.pi/180,
prior_rpy_sigma*np.pi/180,
prior_xyz_sigma,
prior_xyz_sigma,
prior_xyz_sigma]))
ODOMETRY_NOISE = gtsam.noiseModel.Diagonal.Sigmas(np.array([odometry_rpy_sigma*np.pi/180,
odometry_rpy_sigma*np.pi/180,
odometry_rpy_sigma*np.pi/180,
odometry_xyz_sigma,
odometry_xyz_sigma,
odometry_xyz_sigma]))
# Create a Nonlinear factor graph as well as the data structure to hold state estimates.
graph = gtsam.NonlinearFactorGraph()
initial_estimate = gtsam.Values()
# Create iSAM2 parameters which can adjust the threshold necessary to force relinearization and how many
# update calls are required to perform the relinearization.
parameters = gtsam.ISAM2Params()
parameters.setRelinearizeThreshold(0.1)
parameters.relinearizeSkip = 1
isam = gtsam.ISAM2(parameters)
# Create the ground truth poses of the robot trajectory.
true_poses = create_poses()
# Create the ground truth odometry transformations, xyz translations, and roll-pitch-yaw rotations
# between each robot pose in the trajectory.
odometry_tf = [true_poses[i-1].transformPoseTo(true_poses[i]) for i in range(1, len(true_poses))]
odometry_xyz = [(odometry_tf[i].x(), odometry_tf[i].y(), odometry_tf[i].z()) for i in range(len(odometry_tf))]
odometry_rpy = [odometry_tf[i].rotation().rpy() for i in range(len(odometry_tf))]
# Corrupt xyz translations and roll-pitch-yaw rotations with gaussian noise to create noisy odometry measurements.
noisy_measurements = [np.random.multivariate_normal(np.hstack((odometry_rpy[i],odometry_xyz[i])), \
ODOMETRY_NOISE.covariance()) for i in range(len(odometry_tf))]
# Add the prior factor to the factor graph, and poorly initialize the prior pose to demonstrate
# iSAM2 incremental optimization.
graph.push_back(gtsam.PriorFactorPose3(1, true_poses[0], PRIOR_NOISE))
initial_estimate.insert(1, true_poses[0].compose(gtsam.Pose3(
gtsam.Rot3.Rodrigues(-0.1, 0.2, 0.25), gtsam.Point3(0.05, -0.10, 0.20))))
# Initialize the current estimate which is used during the incremental inference loop.
current_estimate = initial_estimate
for i in range(len(odometry_tf)):
# Obtain the noisy translation and rotation that is received by the robot and corrupted by gaussian noise.
noisy_odometry = noisy_measurements[i]
# Compute the noisy odometry transformation according to the xyz translation and roll-pitch-yaw rotation.
noisy_tf = gtsam.Pose3(gtsam.Rot3.RzRyRx(noisy_odometry[:3]), noisy_odometry[3:6].reshape(-1,1))
# Determine if there is loop closure based on the odometry measurement and the previous estimate of the state.
loop = determine_loop_closure(noisy_tf, current_estimate, i, xyz_tol=18, rot_tol=30)
# Add a binary factor in between two existing states if loop closure is detected.
# Otherwise, add a binary factor between a newly observed state and the previous state.
if loop:
graph.push_back(gtsam.BetweenFactorPose3(i + 1, loop, noisy_tf, ODOMETRY_NOISE))
else:
graph.push_back(gtsam.BetweenFactorPose3(i + 1, i + 2, noisy_tf, ODOMETRY_NOISE))
# Compute and insert the initialization estimate for the current pose using a noisy odometry measurement.
noisy_estimate = current_estimate.atPose3(i + 1).compose(noisy_tf)
initial_estimate.insert(i + 2, noisy_estimate)
# Perform incremental update to iSAM2's internal Bayes tree, optimizing only the affected variables.
isam.update(graph, initial_estimate)
current_estimate = isam.calculateEstimate()
# Report all current state estimates from the iSAM2 optimization.
report_on_progress(graph, current_estimate, i)
initial_estimate.clear()
# Print the final covariance matrix for each pose after completing inference.
marginals = gtsam.Marginals(graph, current_estimate)
i = 1
while current_estimate.exists(i):
print(f"X{i} covariance:\n{marginals.marginalCovariance(i)}\n")
i += 1
plt.ioff()
plt.show()
if __name__ == '__main__':
Pose3_ISAM2_example()