153 lines
6.9 KiB
Matlab
153 lines
6.9 KiB
Matlab
close all
|
|
clc
|
|
|
|
import gtsam.*;
|
|
disp('Example of application of ISAM2 for visual-inertial navigation on the KITTI VISION BENCHMARK SUITE (http://www.computervisiononline.com/dataset/kitti-vision-benchmark-suite)')
|
|
|
|
%% Read metadata and compute relative sensor pose transforms
|
|
% IMU metadata
|
|
disp('-- Reading sensor metadata')
|
|
IMU_metadata = importdata('KittiEquivBiasedImu_metadata.txt');
|
|
IMU_metadata = cell2struct(num2cell(IMU_metadata.data), IMU_metadata.colheaders, 2);
|
|
IMUinBody = Pose3.Expmap([IMU_metadata.BodyPtx; IMU_metadata.BodyPty; IMU_metadata.BodyPtz;
|
|
IMU_metadata.BodyPrx; IMU_metadata.BodyPry; IMU_metadata.BodyPrz; ]);
|
|
if ~IMUinBody.equals(Pose3, 1e-5)
|
|
error 'Currently only support IMUinBody is identity, i.e. IMU and body frame are the same';
|
|
end
|
|
|
|
% VO metadata
|
|
VO_metadata = importdata('KittiRelativePose_metadata.txt');
|
|
VO_metadata = cell2struct(num2cell(VO_metadata.data), VO_metadata.colheaders, 2);
|
|
VOinBody = Pose3.Expmap([VO_metadata.BodyPtx; VO_metadata.BodyPty; VO_metadata.BodyPtz;
|
|
VO_metadata.BodyPrx; VO_metadata.BodyPry; VO_metadata.BodyPrz; ]);
|
|
VOinIMU = IMUinBody.inverse().compose(VOinBody);
|
|
|
|
%% Read data and change coordinate frame of GPS and VO measurements to IMU frame
|
|
disp('-- Reading sensor data from file')
|
|
% IMU data
|
|
IMU_data = importdata('KittiEquivBiasedImu.txt');
|
|
IMU_data = cell2struct(num2cell(IMU_data.data), IMU_data.colheaders, 2);
|
|
imum = cellfun(@(x) x', num2cell([ [IMU_data.accelX]' [IMU_data.accelY]' [IMU_data.accelZ]' [IMU_data.omegaX]' [IMU_data.omegaY]' [IMU_data.omegaZ]' ], 2), 'UniformOutput', false);
|
|
[IMU_data.acc_omega] = deal(imum{:});
|
|
clear imum
|
|
|
|
% VO data
|
|
VO_data = importdata('KittiRelativePose.txt');
|
|
VO_data = cell2struct(num2cell(VO_data.data), VO_data.colheaders, 2);
|
|
% Merge relative pose fields and convert to Pose3
|
|
logposes = [ [VO_data.dtx]' [VO_data.dty]' [VO_data.dtz]' [VO_data.drx]' [VO_data.dry]' [VO_data.drz]' ];
|
|
logposes = num2cell(logposes, 2);
|
|
relposes = arrayfun(@(x) {gtsam.Pose3.Expmap(x{:}')}, logposes);
|
|
relposes = arrayfun(@(x) {VOinIMU.compose(x{:}).compose(VOinIMU.inverse())}, relposes);
|
|
[VO_data.RelativePose] = deal(relposes{:});
|
|
VO_data = rmfield(VO_data, { 'dtx' 'dty' 'dtz' 'drx' 'dry' 'drz' });
|
|
noiseModelVO = noiseModel.Diagonal.Sigmas([ VO_metadata.RotationSigma * [1;1;1]; VO_metadata.TranslationSigma * [1;1;1] ]);
|
|
clear logposes relposes
|
|
|
|
%% Get initial conditions for the estimated trajectory
|
|
currentPoseGlobal = Pose3;
|
|
currentVelocityGlobal = [0;0;0]; % the vehicle is stationary at the beginning
|
|
currentBias = imuBias.ConstantBias(zeros(3,1), zeros(3,1));
|
|
sigma_init_x = noiseModel.Isotropic.Sigmas([ 1.0; 1.0; 0.01; 0.01; 0.01; 0.01 ]);
|
|
sigma_init_v = noiseModel.Isotropic.Sigma(3, 1000.0);
|
|
sigma_init_b = noiseModel.Isotropic.Sigmas([ 0.100; 0.100; 0.100; 5.00e-05; 5.00e-05; 5.00e-05 ]);
|
|
sigma_between_b = [ IMU_metadata.AccelerometerBiasSigma * ones(3,1); IMU_metadata.GyroscopeBiasSigma * ones(3,1) ];
|
|
g = [0;0;-9.8];
|
|
w_coriolis = [0;0;0];
|
|
|
|
%% Solver object
|
|
isamParams = ISAM2Params;
|
|
isamParams.setFactorization('CHOLESKY');
|
|
isamParams.relinearizeSkip = 10;
|
|
isam = gtsam.ISAM2(isamParams);
|
|
newFactors = NonlinearFactorGraph;
|
|
newValues = Values;
|
|
|
|
%% Main loop:
|
|
% (1) we read the measurements
|
|
% (2) we create the corresponding factors in the graph
|
|
% (3) we solve the graph to obtain and optimal estimate of robot trajectory
|
|
timestamps = [VO_data.Time]';
|
|
|
|
timestamps = timestamps(15:end,:); % there seem to be issues with the initial IMU measurements
|
|
IMUtimes = [IMU_data.Time];
|
|
|
|
disp('-- Starting main loop: inference is performed at each time step, but we plot trajectory every 100 steps')
|
|
|
|
for measurementIndex = 1:length(timestamps)
|
|
|
|
% At each non=IMU measurement we initialize a new node in the graph
|
|
currentPoseKey = symbol('x',measurementIndex);
|
|
currentVelKey = symbol('v',measurementIndex);
|
|
currentBiasKey = symbol('b',measurementIndex);
|
|
t = timestamps(measurementIndex, 1);
|
|
|
|
if measurementIndex == 1
|
|
%% Create initial estimate and prior on initial pose, velocity, and biases
|
|
newValues.insert(currentPoseKey, currentPoseGlobal);
|
|
newValues.insert(currentVelKey, currentVelocityGlobal);
|
|
newValues.insert(currentBiasKey, currentBias);
|
|
newFactors.add(PriorFactorPose3(currentPoseKey, currentPoseGlobal, sigma_init_x));
|
|
newFactors.add(PriorFactorVector(currentVelKey, currentVelocityGlobal, sigma_init_v));
|
|
newFactors.add(PriorFactorConstantBias(currentBiasKey, currentBias, sigma_init_b));
|
|
else
|
|
t_previous = timestamps(measurementIndex-1, 1);
|
|
%% Summarize IMU data between the previous GPS measurement and now
|
|
IMUindices = find(IMUtimes >= t_previous & IMUtimes <= t);
|
|
|
|
currentSummarizedMeasurement = gtsam.ImuFactorPreintegratedMeasurements( ...
|
|
currentBias, IMU_metadata.AccelerometerSigma.^2 * eye(3), ...
|
|
IMU_metadata.GyroscopeSigma.^2 * eye(3), IMU_metadata.IntegrationSigma.^2 * eye(3));
|
|
|
|
for imuIndex = IMUindices
|
|
accMeas = [ IMU_data(imuIndex).accelX; IMU_data(imuIndex).accelY; IMU_data(imuIndex).accelZ ];
|
|
omegaMeas = [ IMU_data(imuIndex).omegaX; IMU_data(imuIndex).omegaY; IMU_data(imuIndex).omegaZ ];
|
|
deltaT = IMU_data(imuIndex).dt;
|
|
currentSummarizedMeasurement.integrateMeasurement(accMeas, omegaMeas, deltaT);
|
|
end
|
|
|
|
% Create IMU factor
|
|
newFactors.add(ImuFactor( ...
|
|
currentPoseKey-1, currentVelKey-1, ...
|
|
currentPoseKey, currentVelKey, ...
|
|
currentBiasKey, currentSummarizedMeasurement, g, w_coriolis));
|
|
|
|
% LC: sigma_init_b is wrong: this should be some uncertainty on bias evolution given in the IMU metadata
|
|
newFactors.add(BetweenFactorConstantBias(currentBiasKey-1, currentBiasKey, imuBias.ConstantBias(zeros(3,1), zeros(3,1)), ...
|
|
noiseModel.Diagonal.Sigmas(sqrt(numel(IMUindices)) * sigma_between_b)));
|
|
|
|
%% Create VO factor
|
|
VOpose = VO_data(measurementIndex).RelativePose;
|
|
newFactors.add(BetweenFactorPose3(currentPoseKey - 1, currentPoseKey, VOpose, noiseModelVO));
|
|
|
|
% Add initial value
|
|
newValues.insert(currentPoseKey, currentPoseGlobal.compose(VOpose));
|
|
newValues.insert(currentVelKey, currentVelocityGlobal);
|
|
newValues.insert(currentBiasKey, currentBias);
|
|
|
|
% Update solver
|
|
% =======================================================================
|
|
isam.update(newFactors, newValues);
|
|
newFactors = NonlinearFactorGraph;
|
|
newValues = Values;
|
|
|
|
if rem(measurementIndex,100)==0 % plot every 100 time steps
|
|
cla;
|
|
plot3DTrajectory(isam.calculateEstimate, 'g-');
|
|
title('Estimated trajectory using ISAM2 (IMU+VO)')
|
|
xlabel('[m]')
|
|
ylabel('[m]')
|
|
zlabel('[m]')
|
|
axis equal
|
|
drawnow;
|
|
end
|
|
% =======================================================================
|
|
currentPoseGlobal = isam.calculateEstimate(currentPoseKey);
|
|
currentVelocityGlobal = isam.calculateEstimate(currentVelKey);
|
|
currentBias = isam.calculateEstimate(currentBiasKey);
|
|
end
|
|
|
|
end % end main loop
|
|
|
|
disp('-- Reached end of sensor data')
|