gtsam/cpp/testNoiseModel.cpp

228 lines
7.6 KiB
C++

/*
* testNoiseModel.cpp
*
* Created on: Jan 13, 2010
* Author: Richard Roberts
* Author: Frank Dellaert
*/
#include <CppUnitLite/TestHarness.h>
#include <boost/foreach.hpp>
#include <iostream>
#include "NoiseModel.h"
#include "SharedGaussian.h"
#include "SharedDiagonal.h"
using namespace std;
using namespace gtsam;
using namespace noiseModel;
static double sigma = 2, s_1=1.0/sigma, var = sigma*sigma, prc = 1.0/var;
static Matrix R = Matrix_(3, 3,
s_1, 0.0, 0.0,
0.0, s_1, 0.0,
0.0, 0.0, s_1);
static Matrix Sigma = Matrix_(3, 3,
var, 0.0, 0.0,
0.0, var, 0.0,
0.0, 0.0, var);
static Matrix Q = Matrix_(3, 3,
prc, 0.0, 0.0,
0.0, prc, 0.0,
0.0, 0.0, prc);
static double inf = std::numeric_limits<double>::infinity();
/* ************************************************************************* */
//TEST(NoiseModel, constructors)
//{
// Vector whitened = Vector_(3,5.0,10.0,15.0);
// Vector unwhitened = Vector_(3,10.0,20.0,30.0);
//
// // Construct noise models
// vector<Gaussian::shared_ptr> m;
// m.push_back(Gaussian::SqrtInformation(R));
// m.push_back(Gaussian::Covariance(Sigma));
// m.push_back(Gaussian::Information(Q));
// m.push_back(Diagonal::Sigmas(Vector_(3, sigma, sigma, sigma)));
// m.push_back(Diagonal::Variances(Vector_(3, var, var, var)));
// m.push_back(Diagonal::Precisions(Vector_(3, prc, prc, prc)));
// m.push_back(Isotropic::Sigma(3, sigma));
// m.push_back(Isotropic::Variance(3, var));
// m.push_back(Isotropic::Precision(3, prc));
//
// // test whiten
// int i=0;
// BOOST_FOREACH(Gaussian::shared_ptr mi, m)
// CHECK(assert_equal(whitened,mi->whiten(unwhitened)));
//
// // test unwhiten
// BOOST_FOREACH(Gaussian::shared_ptr mi, m)
// CHECK(assert_equal(unwhitened,mi->unwhiten(whitened)));
//
// // test Mahalanobis distance
// double distance = 5*5+10*10+15*15;
// BOOST_FOREACH(Gaussian::shared_ptr mi, m)
// DOUBLES_EQUAL(distance,mi->Mahalanobis(unwhitened),1e-9);
//
// // test R matrix
// Matrix expectedR(Matrix_(3, 3,
// s_1, 0.0, 0.0,
// 0.0, s_1, 0.0,
// 0.0, 0.0, s_1));
//
// BOOST_FOREACH(Gaussian::shared_ptr mi, m)
// CHECK(assert_equal(expectedR,mi->R()));
//
// // test Whiten operator
// Matrix H(Matrix_(3, 4,
// 0.0, 0.0, 1.0, 1.0,
// 0.0, 1.0, 0.0, 1.0,
// 1.0, 0.0, 0.0, 1.0));
//
// Matrix expected(Matrix_(3, 4,
// 0.0, 0.0, s_1, s_1,
// 0.0, s_1, 0.0, s_1,
// s_1, 0.0, 0.0, s_1));
//
// BOOST_FOREACH(Gaussian::shared_ptr mi, m)
// CHECK(assert_equal(expected,mi->Whiten(H)));
//
// // can only test inplace version once :-)
// m[0]->WhitenInPlace(H);
// CHECK(assert_equal(expected,H));
//}
//
///* ************************************************************************* */
//TEST(NoiseModel, Unit) {
// Vector v = Vector_(3,5.0,10.0,15.0);
// Gaussian::shared_ptr u(Unit::Create(3));
// CHECK(assert_equal(v,u->whiten(v)));
//}
//
///* ************************************************************************* */
//TEST(NoiseModel, equals)
//{
// Gaussian::shared_ptr g = Gaussian::SqrtInformation(R);
// Diagonal::shared_ptr d = Diagonal::Sigmas(Vector_(3, sigma, sigma, sigma));
// Isotropic::shared_ptr i = Isotropic::Sigma(3, sigma);
// CHECK(assert_equal(*g,*g));
//}
//
///* ************************************************************************* */
//TEST(NoiseModel, ConstrainedMixed )
//{
// Vector feasible = Vector_(3, 1.0, 0.0, 1.0),
// infeasible = Vector_(3, 1.0, 1.0, 1.0);
// Constrained::shared_ptr d = Constrained::MixedSigmas(Vector_(3, sigma, 0.0, sigma));
// CHECK(assert_equal(Vector_(3, 0.5, inf, 0.5),d->whiten(infeasible)));
// CHECK(assert_equal(Vector_(3, 0.5, 0.0, 0.5),d->whiten(feasible)));
// DOUBLES_EQUAL(inf,d->Mahalanobis(infeasible),1e-9);
// DOUBLES_EQUAL(0.5,d->Mahalanobis(feasible),1e-9);
//}
//
///* ************************************************************************* */
//TEST(NoiseModel, ConstrainedAll )
//{
// Vector feasible = Vector_(3, 0.0, 0.0, 0.0),
// infeasible = Vector_(3, 1.0, 1.0, 1.0);
//
// Constrained::shared_ptr i = Constrained::All(3);
// CHECK(assert_equal(Vector_(3, inf, inf, inf),i->whiten(infeasible)));
// CHECK(assert_equal(Vector_(3, 0.0, 0.0, 0.0),i->whiten(feasible)));
// DOUBLES_EQUAL(inf,i->Mahalanobis(infeasible),1e-9);
// DOUBLES_EQUAL(0.0,i->Mahalanobis(feasible),1e-9);
//}
//
///* ************************************************************************* */
//TEST( NoiseModel, QR )
//{
// // create a matrix to eliminate
// Matrix Ab1 = Matrix_(4, 6+1,
// -1., 0., 1., 0., 0., 0., -0.2,
// 0., -1., 0., 1., 0., 0., 0.3,
// 1., 0., 0., 0., -1., 0., 0.2,
// 0., 1., 0., 0., 0., -1., -0.1);
// Matrix Ab2 = Ab1; // otherwise overwritten !
// Vector sigmas = Vector_(4, 0.2, 0.2, 0.1, 0.1);
//
// // Expected result
// Vector expectedSigmas = Vector_(4, 0.0894427, 0.0894427, 0.223607, 0.223607);
// SharedDiagonal expectedModel = noiseModel::Diagonal::Sigmas(expectedSigmas);
//
// // Call Gaussian version
// SharedDiagonal diagonal = noiseModel::Diagonal::Sigmas(sigmas);
// SharedDiagonal actual1 = diagonal->QR(Ab1);
// SharedDiagonal expected = noiseModel::Unit::Create(4);
// CHECK(assert_equal(*expected,*actual1));
// Matrix expectedRd1 = Matrix_(4, 6+1,
// 11.1803, 0.0, -2.23607, 0.0, -8.94427, 0.0, 2.23607,
// 0.0, 11.1803, 0.0, -2.23607, 0.0, -8.94427,-1.56525,
// 0.0, 0.0, 4.47214, 0.0, -4.47214, 0.0, 0.0,
// 0.0, 0.0, 0.0, 4.47214, 0.0, -4.47214, 0.894427);
// CHECK(assert_equal(expectedRd1,Ab1,1e-4)); // Ab was modified in place !!!
//
// // Call Constrained version
// SharedDiagonal constrained = noiseModel::Constrained::MixedSigmas(sigmas);
// SharedDiagonal actual2 = constrained->QR(Ab2);
// SharedDiagonal expectedModel2 = noiseModel::Diagonal::Sigmas(expectedSigmas);
// CHECK(assert_equal(*expectedModel2,*actual2));
// Matrix expectedRd2 = Matrix_(4, 6+1,
// 1., 0., -0.2, 0., -0.8, 0., 0.2,
// 0., 1., 0.,-0.2, 0., -0.8,-0.14,
// 0., 0., 1., 0., -1., 0., 0.0,
// 0., 0., 0., 1., 0., -1., 0.2);
// CHECK(assert_equal(expectedRd2,Ab2,1e-6)); // Ab was modified in place !!!
//}
//
///* ************************************************************************* */
//TEST(NoiseModel, QRNan )
//{
// SharedDiagonal constrained = noiseModel::Constrained::All(2);
// Matrix Ab = Matrix_(2, 5, 1., 2., 1., 2., 3., 2., 1., 2., 4., 4.);
//
// SharedDiagonal expected = noiseModel::Constrained::All(2);
// Matrix expectedAb = Matrix_(2, 5, 1., 2., 1., 2., 3., 0., 1., 0., 0., 2.0/3);
//
// SharedDiagonal actual = constrained->QR(Ab);
// CHECK(assert_equal(*expected,*actual));
// CHECK(assert_equal(expectedAb,Ab));
//}
//
///* ************************************************************************* */
//TEST(NoiseModel, SmartCovariance )
//{
// bool smart = true;
// SharedGaussian expected = Unit::Create(3);
// SharedGaussian actual = Gaussian::Covariance(eye(3), smart);
// CHECK(assert_equal(*expected,*actual));
//}
//
///* ************************************************************************* */
//TEST(NoiseModel, ScalarOrVector )
//{
// bool smart = true;
// SharedGaussian expected = Unit::Create(3);
// SharedGaussian actual = Gaussian::Covariance(eye(3), smart);
// CHECK(assert_equal(*expected,*actual));
//}
/* ************************************************************************* */
TEST(NoiseModel, WhitenInPlace)
{
Vector sigmas = Vector_(3, 0.1, 0.1, 0.1);
SharedDiagonal model(sigmas);
Matrix A = eye(3);
model->WhitenInPlace(A);
Matrix expected = eye(3) * 10;
CHECK(assert_equal(expected, A));
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */