1384 lines
50 KiB
C++
1384 lines
50 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file testSmartProjectionPoseFactor.cpp
|
|
* @brief Unit tests for ProjectionFactor Class
|
|
* @author Chris Beall
|
|
* @author Luca Carlone
|
|
* @author Zsolt Kira
|
|
* @author Frank Dellaert
|
|
* @date Sept 2013
|
|
*/
|
|
|
|
#include "smartFactorScenarios.h"
|
|
#include <gtsam/slam/ProjectionFactor.h>
|
|
#include <gtsam/slam/PoseTranslationPrior.h>
|
|
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
|
#include <gtsam/base/numericalDerivative.h>
|
|
#include <gtsam/base/serializationTestHelpers.h>
|
|
#include <CppUnitLite/TestHarness.h>
|
|
#include <boost/assign/std/map.hpp>
|
|
#include <boost/bind/bind.hpp>
|
|
#include <iostream>
|
|
|
|
using namespace boost::assign;
|
|
using namespace boost::placeholders;
|
|
|
|
static const double rankTol = 1.0;
|
|
// Create a noise model for the pixel error
|
|
static const double sigma = 0.1;
|
|
static SharedIsotropic model(noiseModel::Isotropic::Sigma(2, sigma));
|
|
|
|
// Convenience for named keys
|
|
using symbol_shorthand::X;
|
|
using symbol_shorthand::L;
|
|
|
|
// tests data
|
|
static Symbol x1('X', 1);
|
|
static Symbol x2('X', 2);
|
|
static Symbol x3('X', 3);
|
|
|
|
static Point2 measurement1(323.0, 240.0);
|
|
|
|
LevenbergMarquardtParams lmParams;
|
|
// Make more verbose like so (in tests):
|
|
// params.verbosityLM = LevenbergMarquardtParams::SUMMARY;
|
|
|
|
/* ************************************************************************* */
|
|
TEST( SmartProjectionPoseFactor, Constructor) {
|
|
using namespace vanillaPose;
|
|
SmartFactor::shared_ptr factor1(new SmartFactor(model, sharedK));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( SmartProjectionPoseFactor, Constructor2) {
|
|
using namespace vanillaPose;
|
|
SmartProjectionParams params;
|
|
params.setRankTolerance(rankTol);
|
|
SmartFactor factor1(model, sharedK, params);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( SmartProjectionPoseFactor, Constructor3) {
|
|
using namespace vanillaPose;
|
|
SmartFactor::shared_ptr factor1(new SmartFactor(model, sharedK));
|
|
factor1->add(measurement1, x1);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( SmartProjectionPoseFactor, Constructor4) {
|
|
using namespace vanillaPose;
|
|
SmartProjectionParams params;
|
|
params.setRankTolerance(rankTol);
|
|
SmartFactor factor1(model, sharedK, params);
|
|
factor1.add(measurement1, x1);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( SmartProjectionPoseFactor, params) {
|
|
using namespace vanillaPose;
|
|
SmartProjectionParams params;
|
|
double rt = params.getRetriangulationThreshold();
|
|
EXPECT_DOUBLES_EQUAL(1e-5, rt, 1e-7);
|
|
params.setRetriangulationThreshold(1e-3);
|
|
rt = params.getRetriangulationThreshold();
|
|
EXPECT_DOUBLES_EQUAL(1e-3, rt, 1e-7);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( SmartProjectionPoseFactor, Equals ) {
|
|
using namespace vanillaPose;
|
|
SmartFactor::shared_ptr factor1(new SmartFactor(model, sharedK));
|
|
factor1->add(measurement1, x1);
|
|
|
|
SmartFactor::shared_ptr factor2(new SmartFactor(model,sharedK));
|
|
factor2->add(measurement1, x1);
|
|
|
|
CHECK(assert_equal(*factor1, *factor2));
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST( SmartProjectionPoseFactor, noiseless ) {
|
|
|
|
using namespace vanillaPose;
|
|
|
|
// Project two landmarks into two cameras
|
|
Point2 level_uv = level_camera.project(landmark1);
|
|
Point2 level_uv_right = level_camera_right.project(landmark1);
|
|
|
|
SmartFactor factor(model, sharedK);
|
|
factor.add(level_uv, x1);
|
|
factor.add(level_uv_right, x2);
|
|
|
|
Values values; // it's a pose factor, hence these are poses
|
|
values.insert(x1, cam1.pose());
|
|
values.insert(x2, cam2.pose());
|
|
|
|
double actualError = factor.error(values);
|
|
double expectedError = 0.0;
|
|
EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7);
|
|
|
|
SmartFactor::Cameras cameras = factor.cameras(values);
|
|
double actualError2 = factor.totalReprojectionError(cameras);
|
|
EXPECT_DOUBLES_EQUAL(expectedError, actualError2, 1e-7);
|
|
|
|
// Calculate expected derivative for point (easiest to check)
|
|
boost::function<Vector(Point3)> f = //
|
|
boost::bind(&SmartFactor::whitenedError<Point3>, factor, cameras, _1);
|
|
|
|
// Calculate using computeEP
|
|
Matrix actualE;
|
|
factor.triangulateAndComputeE(actualE, values);
|
|
|
|
// get point
|
|
boost::optional<Point3> point = factor.point();
|
|
CHECK(point);
|
|
|
|
// calculate numerical derivative with triangulated point
|
|
Matrix expectedE = sigma * numericalDerivative11<Vector, Point3>(f, *point);
|
|
EXPECT(assert_equal(expectedE, actualE, 1e-7));
|
|
|
|
// Calculate using reprojectionError
|
|
SmartFactor::Cameras::FBlocks F;
|
|
Matrix E;
|
|
Vector actualErrors = factor.unwhitenedError(cameras, *point, F, E);
|
|
EXPECT(assert_equal(expectedE, E, 1e-7));
|
|
|
|
EXPECT(assert_equal(Z_4x1, actualErrors, 1e-7));
|
|
|
|
// Calculate using computeJacobians
|
|
Vector b;
|
|
SmartFactor::FBlocks Fs;
|
|
factor.computeJacobians(Fs, E, b, cameras, *point);
|
|
double actualError3 = b.squaredNorm();
|
|
EXPECT(assert_equal(expectedE, E, 1e-7));
|
|
EXPECT_DOUBLES_EQUAL(expectedError, actualError3, 1e-6);
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST( SmartProjectionPoseFactor, noisy ) {
|
|
|
|
using namespace vanillaPose;
|
|
|
|
// Project two landmarks into two cameras
|
|
Point2 pixelError(0.2, 0.2);
|
|
Point2 level_uv = level_camera.project(landmark1) + pixelError;
|
|
Point2 level_uv_right = level_camera_right.project(landmark1);
|
|
|
|
Values values;
|
|
values.insert(x1, cam1.pose());
|
|
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 10, 0., -M_PI / 10),
|
|
Point3(0.5, 0.1, 0.3));
|
|
values.insert(x2, pose_right.compose(noise_pose));
|
|
|
|
SmartFactor::shared_ptr factor(new SmartFactor(model, sharedK));
|
|
factor->add(level_uv, x1);
|
|
factor->add(level_uv_right, x2);
|
|
|
|
double actualError1 = factor->error(values);
|
|
|
|
SmartFactor::shared_ptr factor2(new SmartFactor(model, sharedK));
|
|
Point2Vector measurements;
|
|
measurements.push_back(level_uv);
|
|
measurements.push_back(level_uv_right);
|
|
|
|
KeyVector views {x1, x2};
|
|
|
|
factor2->add(measurements, views);
|
|
double actualError2 = factor2->error(values);
|
|
DOUBLES_EQUAL(actualError1, actualError2, 1e-7);
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST(SmartProjectionPoseFactor, smartFactorWithSensorBodyTransform) {
|
|
using namespace vanillaPose;
|
|
|
|
// create arbitrary body_T_sensor (transforms from sensor to body)
|
|
Pose3 body_T_sensor = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(1, 1, 1));
|
|
|
|
// These are the poses we want to estimate, from camera measurements
|
|
const Pose3 sensor_T_body = body_T_sensor.inverse();
|
|
Pose3 wTb1 = cam1.pose() * sensor_T_body;
|
|
Pose3 wTb2 = cam2.pose() * sensor_T_body;
|
|
Pose3 wTb3 = cam3.pose() * sensor_T_body;
|
|
|
|
// three landmarks ~5 meters infront of camera
|
|
Point3 landmark1(5, 0.5, 1.2), landmark2(5, -0.5, 1.2), landmark3(5, 0, 3.0);
|
|
|
|
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
|
|
|
|
// Project three landmarks into three cameras
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
|
|
|
// Create smart factors
|
|
KeyVector views {x1, x2, x3};
|
|
|
|
SmartProjectionParams params;
|
|
params.setRankTolerance(1.0);
|
|
params.setDegeneracyMode(IGNORE_DEGENERACY);
|
|
params.setEnableEPI(false);
|
|
|
|
SmartFactor smartFactor1(model, sharedK, body_T_sensor, params);
|
|
smartFactor1.add(measurements_cam1, views);
|
|
|
|
SmartFactor smartFactor2(model, sharedK, body_T_sensor, params);
|
|
smartFactor2.add(measurements_cam2, views);
|
|
|
|
SmartFactor smartFactor3(model, sharedK, body_T_sensor, params);
|
|
smartFactor3.add(measurements_cam3, views);
|
|
|
|
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
|
|
|
// Put all factors in factor graph, adding priors
|
|
NonlinearFactorGraph graph;
|
|
graph.push_back(smartFactor1);
|
|
graph.push_back(smartFactor2);
|
|
graph.push_back(smartFactor3);
|
|
graph.addPrior(x1, wTb1, noisePrior);
|
|
graph.addPrior(x2, wTb2, noisePrior);
|
|
|
|
// Check errors at ground truth poses
|
|
Values gtValues;
|
|
gtValues.insert(x1, wTb1);
|
|
gtValues.insert(x2, wTb2);
|
|
gtValues.insert(x3, wTb3);
|
|
double actualError = graph.error(gtValues);
|
|
double expectedError = 0.0;
|
|
DOUBLES_EQUAL(expectedError, actualError, 1e-7)
|
|
|
|
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
|
Point3(0.1, 0.1, 0.1));
|
|
Values values;
|
|
values.insert(x1, wTb1);
|
|
values.insert(x2, wTb2);
|
|
// initialize third pose with some noise, we expect it to move back to
|
|
// original pose3
|
|
values.insert(x3, wTb3 * noise_pose);
|
|
|
|
LevenbergMarquardtParams lmParams;
|
|
Values result;
|
|
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
|
result = optimizer.optimize();
|
|
EXPECT(assert_equal(wTb3, result.at<Pose3>(x3)));
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST( SmartProjectionPoseFactor, 3poses_smart_projection_factor ) {
|
|
|
|
using namespace vanillaPose2;
|
|
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
|
|
|
|
// Project three landmarks into three cameras
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
|
|
|
KeyVector views;
|
|
views.push_back(x1);
|
|
views.push_back(x2);
|
|
views.push_back(x3);
|
|
|
|
SmartFactor::shared_ptr smartFactor1(new SmartFactor(model, sharedK2));
|
|
smartFactor1->add(measurements_cam1, views);
|
|
|
|
SmartFactor::shared_ptr smartFactor2(new SmartFactor(model, sharedK2));
|
|
smartFactor2->add(measurements_cam2, views);
|
|
|
|
SmartFactor::shared_ptr smartFactor3(new SmartFactor(model, sharedK2));
|
|
smartFactor3->add(measurements_cam3, views);
|
|
|
|
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.push_back(smartFactor1);
|
|
graph.push_back(smartFactor2);
|
|
graph.push_back(smartFactor3);
|
|
graph.addPrior(x1, cam1.pose(), noisePrior);
|
|
graph.addPrior(x2, cam2.pose(), noisePrior);
|
|
|
|
Values groundTruth;
|
|
groundTruth.insert(x1, cam1.pose());
|
|
groundTruth.insert(x2, cam2.pose());
|
|
groundTruth.insert(x3, cam3.pose());
|
|
DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
|
|
|
|
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
|
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
|
Point3(0.1, 0.1, 0.1)); // smaller noise
|
|
Values values;
|
|
values.insert(x1, cam1.pose());
|
|
values.insert(x2, cam2.pose());
|
|
// initialize third pose with some noise, we expect it to move back to original pose_above
|
|
values.insert(x3, pose_above * noise_pose);
|
|
EXPECT(
|
|
assert_equal(
|
|
Pose3(
|
|
Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
|
|
-0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
|
|
Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
|
|
|
|
Values result;
|
|
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
|
result = optimizer.optimize();
|
|
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-6));
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST( SmartProjectionPoseFactor, Factors ) {
|
|
|
|
using namespace vanillaPose;
|
|
|
|
// Default cameras for simple derivatives
|
|
Rot3 R;
|
|
static Cal3_S2::shared_ptr sharedK(new Cal3_S2(100, 100, 0, 0, 0));
|
|
Camera cam1(Pose3(R, Point3(0, 0, 0)), sharedK), cam2(
|
|
Pose3(R, Point3(1, 0, 0)), sharedK);
|
|
|
|
// one landmarks 1m in front of camera
|
|
Point3 landmark1(0, 0, 10);
|
|
|
|
Point2Vector measurements_cam1;
|
|
|
|
// Project 2 landmarks into 2 cameras
|
|
measurements_cam1.push_back(cam1.project(landmark1));
|
|
measurements_cam1.push_back(cam2.project(landmark1));
|
|
|
|
// Create smart factors
|
|
KeyVector views {x1, x2};
|
|
|
|
SmartFactor::shared_ptr smartFactor1 = boost::make_shared<SmartFactor>(model, sharedK);
|
|
smartFactor1->add(measurements_cam1, views);
|
|
|
|
SmartFactor::Cameras cameras;
|
|
cameras.push_back(cam1);
|
|
cameras.push_back(cam2);
|
|
|
|
// Make sure triangulation works
|
|
CHECK(smartFactor1->triangulateSafe(cameras));
|
|
CHECK(!smartFactor1->isDegenerate());
|
|
CHECK(!smartFactor1->isPointBehindCamera());
|
|
boost::optional<Point3> p = smartFactor1->point();
|
|
CHECK(p);
|
|
EXPECT(assert_equal(landmark1, *p));
|
|
|
|
VectorValues zeroDelta;
|
|
Vector6 delta;
|
|
delta.setZero();
|
|
zeroDelta.insert(x1, delta);
|
|
zeroDelta.insert(x2, delta);
|
|
|
|
VectorValues perturbedDelta;
|
|
delta.setOnes();
|
|
perturbedDelta.insert(x1, delta);
|
|
perturbedDelta.insert(x2, delta);
|
|
double expectedError = 2500;
|
|
|
|
// After eliminating the point, A1 and A2 contain 2-rank information on cameras:
|
|
Matrix16 A1, A2;
|
|
A1 << -10, 0, 0, 0, 1, 0;
|
|
A2 << 10, 0, 1, 0, -1, 0;
|
|
A1 *= 10. / sigma;
|
|
A2 *= 10. / sigma;
|
|
Matrix expectedInformation; // filled below
|
|
{
|
|
// createHessianFactor
|
|
Matrix66 G11 = 0.5 * A1.transpose() * A1;
|
|
Matrix66 G12 = 0.5 * A1.transpose() * A2;
|
|
Matrix66 G22 = 0.5 * A2.transpose() * A2;
|
|
|
|
Vector6 g1;
|
|
g1.setZero();
|
|
Vector6 g2;
|
|
g2.setZero();
|
|
|
|
double f = 0;
|
|
|
|
RegularHessianFactor<6> expected(x1, x2, G11, G12, g1, G22, g2, f);
|
|
expectedInformation = expected.information();
|
|
|
|
boost::shared_ptr<RegularHessianFactor<6> > actual =
|
|
smartFactor1->createHessianFactor(cameras, 0.0);
|
|
EXPECT(assert_equal(expectedInformation, actual->information(), 1e-6));
|
|
EXPECT(assert_equal(expected, *actual, 1e-6));
|
|
EXPECT_DOUBLES_EQUAL(0, actual->error(zeroDelta), 1e-6);
|
|
EXPECT_DOUBLES_EQUAL(expectedError, actual->error(perturbedDelta), 1e-6);
|
|
}
|
|
|
|
{
|
|
Matrix26 F1;
|
|
F1.setZero();
|
|
F1(0, 1) = -100;
|
|
F1(0, 3) = -10;
|
|
F1(1, 0) = 100;
|
|
F1(1, 4) = -10;
|
|
Matrix26 F2;
|
|
F2.setZero();
|
|
F2(0, 1) = -101;
|
|
F2(0, 3) = -10;
|
|
F2(0, 5) = -1;
|
|
F2(1, 0) = 100;
|
|
F2(1, 2) = 10;
|
|
F2(1, 4) = -10;
|
|
Matrix E(4, 3);
|
|
E.setZero();
|
|
E(0, 0) = 10;
|
|
E(1, 1) = 10;
|
|
E(2, 0) = 10;
|
|
E(2, 2) = 1;
|
|
E(3, 1) = 10;
|
|
SmartFactor::FBlocks Fs = list_of<Matrix>(F1)(F2);
|
|
Vector b(4);
|
|
b.setZero();
|
|
|
|
// Create smart factors
|
|
KeyVector keys;
|
|
keys.push_back(x1);
|
|
keys.push_back(x2);
|
|
|
|
// createJacobianQFactor
|
|
SharedIsotropic n = noiseModel::Isotropic::Sigma(4, sigma);
|
|
Matrix3 P = (E.transpose() * E).inverse();
|
|
JacobianFactorQ<6, 2> expectedQ(keys, Fs, E, P, b, n);
|
|
EXPECT(assert_equal(expectedInformation, expectedQ.information(), 1e-6));
|
|
|
|
boost::shared_ptr<JacobianFactorQ<6, 2> > actualQ =
|
|
smartFactor1->createJacobianQFactor(cameras, 0.0);
|
|
CHECK(actualQ);
|
|
EXPECT(assert_equal(expectedInformation, actualQ->information(), 1e-6));
|
|
EXPECT(assert_equal(expectedQ, *actualQ));
|
|
EXPECT_DOUBLES_EQUAL(0, actualQ->error(zeroDelta), 1e-6);
|
|
EXPECT_DOUBLES_EQUAL(expectedError, actualQ->error(perturbedDelta), 1e-6);
|
|
|
|
// Whiten for RegularImplicitSchurFactor (does not have noise model)
|
|
model->WhitenSystem(E, b);
|
|
Matrix3 whiteP = (E.transpose() * E).inverse();
|
|
Fs[0] = model->Whiten(Fs[0]);
|
|
Fs[1] = model->Whiten(Fs[1]);
|
|
|
|
// createRegularImplicitSchurFactor
|
|
RegularImplicitSchurFactor<Camera> expected(keys, Fs, E, whiteP, b);
|
|
|
|
boost::shared_ptr<RegularImplicitSchurFactor<Camera> > actual =
|
|
smartFactor1->createRegularImplicitSchurFactor(cameras, 0.0);
|
|
CHECK(actual);
|
|
EXPECT(assert_equal(expectedInformation, expected.information(), 1e-6));
|
|
EXPECT(assert_equal(expectedInformation, actual->information(), 1e-6));
|
|
EXPECT(assert_equal(expected, *actual));
|
|
EXPECT_DOUBLES_EQUAL(0, actual->error(zeroDelta), 1e-6);
|
|
EXPECT_DOUBLES_EQUAL(expectedError, actual->error(perturbedDelta), 1e-6);
|
|
}
|
|
|
|
{
|
|
// createJacobianSVDFactor
|
|
Vector1 b;
|
|
b.setZero();
|
|
double s = sigma * sin(M_PI_4);
|
|
SharedIsotropic n = noiseModel::Isotropic::Sigma(4 - 3, sigma);
|
|
JacobianFactor expected(x1, s * A1, x2, s * A2, b, n);
|
|
EXPECT(assert_equal(expectedInformation, expected.information(), 1e-6));
|
|
|
|
boost::shared_ptr<JacobianFactor> actual =
|
|
smartFactor1->createJacobianSVDFactor(cameras, 0.0);
|
|
CHECK(actual);
|
|
EXPECT(assert_equal(expectedInformation, actual->information(), 1e-6));
|
|
EXPECT(assert_equal(expected, *actual));
|
|
EXPECT_DOUBLES_EQUAL(0, actual->error(zeroDelta), 1e-6);
|
|
EXPECT_DOUBLES_EQUAL(expectedError, actual->error(perturbedDelta), 1e-6);
|
|
}
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST( SmartProjectionPoseFactor, 3poses_iterative_smart_projection_factor ) {
|
|
|
|
using namespace vanillaPose;
|
|
|
|
KeyVector views {x1, x2, x3};
|
|
|
|
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
|
|
|
|
// Project three landmarks into three cameras
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
|
|
|
SmartFactor::shared_ptr smartFactor1(new SmartFactor(model, sharedK));
|
|
smartFactor1->add(measurements_cam1, views);
|
|
|
|
SmartFactor::shared_ptr smartFactor2(new SmartFactor(model, sharedK));
|
|
smartFactor2->add(measurements_cam2, views);
|
|
|
|
SmartFactor::shared_ptr smartFactor3(new SmartFactor(model, sharedK));
|
|
smartFactor3->add(measurements_cam3, views);
|
|
|
|
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.push_back(smartFactor1);
|
|
graph.push_back(smartFactor2);
|
|
graph.push_back(smartFactor3);
|
|
graph.addPrior(x1, cam1.pose(), noisePrior);
|
|
graph.addPrior(x2, cam2.pose(), noisePrior);
|
|
|
|
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
|
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
|
Point3(0.1, 0.1, 0.1)); // smaller noise
|
|
Values values;
|
|
values.insert(x1, cam1.pose());
|
|
values.insert(x2, cam2.pose());
|
|
// initialize third pose with some noise, we expect it to move back to original pose_above
|
|
values.insert(x3, pose_above * noise_pose);
|
|
EXPECT(
|
|
assert_equal(
|
|
Pose3(
|
|
Rot3(1.11022302e-16, -0.0314107591, 0.99950656, -0.99950656,
|
|
-0.0313952598, -0.000986635786, 0.0314107591, -0.999013364,
|
|
-0.0313952598), Point3(0.1, -0.1, 1.9)),
|
|
values.at<Pose3>(x3)));
|
|
|
|
Values result;
|
|
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
|
result = optimizer.optimize();
|
|
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-7));
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST( SmartProjectionPoseFactor, jacobianSVD ) {
|
|
|
|
using namespace vanillaPose;
|
|
|
|
KeyVector views {x1, x2, x3};
|
|
|
|
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
|
|
|
|
// Project three landmarks into three cameras
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
|
|
|
SmartProjectionParams params;
|
|
params.setRankTolerance(1.0);
|
|
params.setLinearizationMode(gtsam::JACOBIAN_SVD);
|
|
params.setDegeneracyMode(gtsam::IGNORE_DEGENERACY);
|
|
params.setEnableEPI(false);
|
|
SmartFactor factor1(model, sharedK, params);
|
|
|
|
SmartFactor::shared_ptr smartFactor1(
|
|
new SmartFactor(model, sharedK, params));
|
|
smartFactor1->add(measurements_cam1, views);
|
|
|
|
SmartFactor::shared_ptr smartFactor2(
|
|
new SmartFactor(model, sharedK, params));
|
|
smartFactor2->add(measurements_cam2, views);
|
|
|
|
SmartFactor::shared_ptr smartFactor3(
|
|
new SmartFactor(model, sharedK, params));
|
|
smartFactor3->add(measurements_cam3, views);
|
|
|
|
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.push_back(smartFactor1);
|
|
graph.push_back(smartFactor2);
|
|
graph.push_back(smartFactor3);
|
|
graph.addPrior(x1, cam1.pose(), noisePrior);
|
|
graph.addPrior(x2, cam2.pose(), noisePrior);
|
|
|
|
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
|
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
|
Point3(0.1, 0.1, 0.1)); // smaller noise
|
|
Values values;
|
|
values.insert(x1, cam1.pose());
|
|
values.insert(x2, cam2.pose());
|
|
values.insert(x3, pose_above * noise_pose);
|
|
|
|
Values result;
|
|
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
|
result = optimizer.optimize();
|
|
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-6));
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST( SmartProjectionPoseFactor, landmarkDistance ) {
|
|
|
|
using namespace vanillaPose;
|
|
|
|
double excludeLandmarksFutherThanDist = 2;
|
|
|
|
KeyVector views {x1, x2, x3};
|
|
|
|
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
|
|
|
|
// Project three landmarks into three cameras
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
|
|
|
SmartProjectionParams params;
|
|
params.setRankTolerance(1.0);
|
|
params.setLinearizationMode(gtsam::JACOBIAN_SVD);
|
|
params.setDegeneracyMode(gtsam::IGNORE_DEGENERACY);
|
|
params.setLandmarkDistanceThreshold(excludeLandmarksFutherThanDist);
|
|
params.setEnableEPI(false);
|
|
|
|
SmartFactor::shared_ptr smartFactor1(
|
|
new SmartFactor(model, sharedK, params));
|
|
smartFactor1->add(measurements_cam1, views);
|
|
|
|
SmartFactor::shared_ptr smartFactor2(
|
|
new SmartFactor(model, sharedK, params));
|
|
smartFactor2->add(measurements_cam2, views);
|
|
|
|
SmartFactor::shared_ptr smartFactor3(
|
|
new SmartFactor(model, sharedK, params));
|
|
smartFactor3->add(measurements_cam3, views);
|
|
|
|
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.push_back(smartFactor1);
|
|
graph.push_back(smartFactor2);
|
|
graph.push_back(smartFactor3);
|
|
graph.addPrior(x1, cam1.pose(), noisePrior);
|
|
graph.addPrior(x2, cam2.pose(), noisePrior);
|
|
|
|
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
|
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
|
Point3(0.1, 0.1, 0.1)); // smaller noise
|
|
Values values;
|
|
values.insert(x1, cam1.pose());
|
|
values.insert(x2, cam2.pose());
|
|
values.insert(x3, pose_above * noise_pose);
|
|
|
|
// All factors are disabled and pose should remain where it is
|
|
Values result;
|
|
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
|
result = optimizer.optimize();
|
|
EXPECT(assert_equal(values.at<Pose3>(x3), result.at<Pose3>(x3)));
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST( SmartProjectionPoseFactor, dynamicOutlierRejection ) {
|
|
|
|
using namespace vanillaPose;
|
|
|
|
double excludeLandmarksFutherThanDist = 1e10;
|
|
double dynamicOutlierRejectionThreshold = 1; // max 1 pixel of average reprojection error
|
|
|
|
KeyVector views {x1, x2, x3};
|
|
|
|
// add fourth landmark
|
|
Point3 landmark4(5, -0.5, 1);
|
|
|
|
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3,
|
|
measurements_cam4;
|
|
|
|
// Project 4 landmarks into three cameras
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark4, measurements_cam4);
|
|
measurements_cam4.at(0) = measurements_cam4.at(0) + Point2(10, 10); // add outlier
|
|
|
|
SmartProjectionParams params;
|
|
params.setLinearizationMode(gtsam::JACOBIAN_SVD);
|
|
params.setLandmarkDistanceThreshold(excludeLandmarksFutherThanDist);
|
|
params.setDynamicOutlierRejectionThreshold(dynamicOutlierRejectionThreshold);
|
|
|
|
SmartFactor::shared_ptr smartFactor1(
|
|
new SmartFactor(model, sharedK, params));
|
|
smartFactor1->add(measurements_cam1, views);
|
|
|
|
SmartFactor::shared_ptr smartFactor2(
|
|
new SmartFactor(model, sharedK, params));
|
|
smartFactor2->add(measurements_cam2, views);
|
|
|
|
SmartFactor::shared_ptr smartFactor3(
|
|
new SmartFactor(model, sharedK, params));
|
|
smartFactor3->add(measurements_cam3, views);
|
|
|
|
SmartFactor::shared_ptr smartFactor4(
|
|
new SmartFactor(model, sharedK, params));
|
|
smartFactor4->add(measurements_cam4, views);
|
|
|
|
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.push_back(smartFactor1);
|
|
graph.push_back(smartFactor2);
|
|
graph.push_back(smartFactor3);
|
|
graph.push_back(smartFactor4);
|
|
graph.addPrior(x1, cam1.pose(), noisePrior);
|
|
graph.addPrior(x2, cam2.pose(), noisePrior);
|
|
|
|
Values values;
|
|
values.insert(x1, cam1.pose());
|
|
values.insert(x2, cam2.pose());
|
|
values.insert(x3, cam3.pose());
|
|
|
|
// All factors are disabled and pose should remain where it is
|
|
Values result;
|
|
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
|
result = optimizer.optimize();
|
|
EXPECT(assert_equal(cam3.pose(), result.at<Pose3>(x3)));
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST( SmartProjectionPoseFactor, jacobianQ ) {
|
|
|
|
using namespace vanillaPose;
|
|
|
|
KeyVector views {x1, x2, x3};
|
|
|
|
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
|
|
|
|
// Project three landmarks into three cameras
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
|
|
|
SmartProjectionParams params;
|
|
params.setLinearizationMode(gtsam::JACOBIAN_Q);
|
|
|
|
SmartFactor::shared_ptr smartFactor1(
|
|
new SmartFactor(model, sharedK, params));
|
|
smartFactor1->add(measurements_cam1, views);
|
|
|
|
SmartFactor::shared_ptr smartFactor2(
|
|
new SmartFactor(model, sharedK, params));
|
|
smartFactor2->add(measurements_cam2, views);
|
|
|
|
SmartFactor::shared_ptr smartFactor3(
|
|
new SmartFactor(model, sharedK, params));
|
|
smartFactor3->add(measurements_cam3, views);
|
|
|
|
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.push_back(smartFactor1);
|
|
graph.push_back(smartFactor2);
|
|
graph.push_back(smartFactor3);
|
|
graph.addPrior(x1, cam1.pose(), noisePrior);
|
|
graph.addPrior(x2, cam2.pose(), noisePrior);
|
|
|
|
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
|
Point3(0.1, 0.1, 0.1)); // smaller noise
|
|
Values values;
|
|
values.insert(x1, cam1.pose());
|
|
values.insert(x2, cam2.pose());
|
|
values.insert(x3, pose_above * noise_pose);
|
|
|
|
Values result;
|
|
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
|
result = optimizer.optimize();
|
|
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-6));
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST( SmartProjectionPoseFactor, 3poses_projection_factor ) {
|
|
|
|
using namespace vanillaPose2;
|
|
|
|
KeyVector views {x1, x2, x3};
|
|
|
|
typedef GenericProjectionFactor<Pose3, Point3> ProjectionFactor;
|
|
NonlinearFactorGraph graph;
|
|
|
|
// Project three landmarks into three cameras
|
|
graph.emplace_shared<ProjectionFactor>(cam1.project(landmark1), model, x1, L(1), sharedK2);
|
|
graph.emplace_shared<ProjectionFactor>(cam2.project(landmark1), model, x2, L(1), sharedK2);
|
|
graph.emplace_shared<ProjectionFactor>(cam3.project(landmark1), model, x3, L(1), sharedK2);
|
|
|
|
graph.emplace_shared<ProjectionFactor>(cam1.project(landmark2), model, x1, L(2), sharedK2);
|
|
graph.emplace_shared<ProjectionFactor>(cam2.project(landmark2), model, x2, L(2), sharedK2);
|
|
graph.emplace_shared<ProjectionFactor>(cam3.project(landmark2), model, x3, L(2), sharedK2);
|
|
|
|
graph.emplace_shared<ProjectionFactor>(cam1.project(landmark3), model, x1, L(3), sharedK2);
|
|
graph.emplace_shared<ProjectionFactor>(cam2.project(landmark3), model, x2, L(3), sharedK2);
|
|
graph.emplace_shared<ProjectionFactor>(cam3.project(landmark3), model, x3, L(3), sharedK2);
|
|
|
|
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
|
graph.addPrior(x1, level_pose, noisePrior);
|
|
graph.addPrior(x2, pose_right, noisePrior);
|
|
|
|
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 10, 0., -M_PI / 10),
|
|
Point3(0.5, 0.1, 0.3));
|
|
Values values;
|
|
values.insert(x1, level_pose);
|
|
values.insert(x2, pose_right);
|
|
values.insert(x3, pose_above * noise_pose);
|
|
values.insert(L(1), landmark1);
|
|
values.insert(L(2), landmark2);
|
|
values.insert(L(3), landmark3);
|
|
|
|
DOUBLES_EQUAL(48406055, graph.error(values), 1);
|
|
|
|
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
|
Values result = optimizer.optimize();
|
|
|
|
DOUBLES_EQUAL(0, graph.error(result), 1e-9);
|
|
|
|
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-7));
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST( SmartProjectionPoseFactor, CheckHessian) {
|
|
|
|
KeyVector views {x1, x2, x3};
|
|
|
|
using namespace vanillaPose;
|
|
|
|
// Two slightly different cameras
|
|
Pose3 pose2 = level_pose
|
|
* Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0, 0, 0));
|
|
Pose3 pose3 = pose2 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0, 0, 0));
|
|
Camera cam2(pose2, sharedK);
|
|
Camera cam3(pose3, sharedK);
|
|
|
|
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
|
|
|
|
// Project three landmarks into three cameras
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
|
|
|
SmartProjectionParams params;
|
|
params.setRankTolerance(10);
|
|
|
|
SmartFactor::shared_ptr smartFactor1(
|
|
new SmartFactor(model, sharedK, params)); // HESSIAN, by default
|
|
smartFactor1->add(measurements_cam1, views);
|
|
|
|
SmartFactor::shared_ptr smartFactor2(
|
|
new SmartFactor(model, sharedK, params)); // HESSIAN, by default
|
|
smartFactor2->add(measurements_cam2, views);
|
|
|
|
SmartFactor::shared_ptr smartFactor3(
|
|
new SmartFactor(model, sharedK, params)); // HESSIAN, by default
|
|
smartFactor3->add(measurements_cam3, views);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.push_back(smartFactor1);
|
|
graph.push_back(smartFactor2);
|
|
graph.push_back(smartFactor3);
|
|
|
|
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
|
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
|
Point3(0.1, 0.1, 0.1)); // smaller noise
|
|
Values values;
|
|
values.insert(x1, cam1.pose());
|
|
values.insert(x2, cam2.pose());
|
|
// initialize third pose with some noise, we expect it to move back to original pose_above
|
|
values.insert(x3, pose3 * noise_pose);
|
|
EXPECT(
|
|
assert_equal(
|
|
Pose3(
|
|
Rot3(0.00563056869, -0.130848107, 0.991386438, -0.991390265,
|
|
-0.130426831, -0.0115837907, 0.130819108, -0.98278564,
|
|
-0.130455917),
|
|
Point3(0.0897734171, -0.110201006, 0.901022872)),
|
|
values.at<Pose3>(x3)));
|
|
|
|
boost::shared_ptr<GaussianFactor> factor1 = smartFactor1->linearize(values);
|
|
boost::shared_ptr<GaussianFactor> factor2 = smartFactor2->linearize(values);
|
|
boost::shared_ptr<GaussianFactor> factor3 = smartFactor3->linearize(values);
|
|
|
|
Matrix CumulativeInformation = factor1->information() + factor2->information()
|
|
+ factor3->information();
|
|
|
|
boost::shared_ptr<GaussianFactorGraph> GaussianGraph = graph.linearize(
|
|
values);
|
|
Matrix GraphInformation = GaussianGraph->hessian().first;
|
|
|
|
// Check Hessian
|
|
EXPECT(assert_equal(GraphInformation, CumulativeInformation, 1e-6));
|
|
|
|
Matrix AugInformationMatrix = factor1->augmentedInformation()
|
|
+ factor2->augmentedInformation() + factor3->augmentedInformation();
|
|
|
|
// Check Information vector
|
|
Vector InfoVector = AugInformationMatrix.block(0, 18, 18, 1); // 18x18 Hessian + information vector
|
|
|
|
// Check Hessian
|
|
EXPECT(assert_equal(InfoVector, GaussianGraph->hessian().second, 1e-6));
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST( SmartProjectionPoseFactor, 3poses_2land_rotation_only_smart_projection_factor ) {
|
|
using namespace vanillaPose2;
|
|
|
|
KeyVector views {x1, x2, x3};
|
|
|
|
// Two different cameras, at the same position, but different rotations
|
|
Pose3 pose2 = level_pose * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0));
|
|
Pose3 pose3 = pose2 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0));
|
|
Camera cam2(pose2, sharedK2);
|
|
Camera cam3(pose3, sharedK2);
|
|
|
|
Point2Vector measurements_cam1, measurements_cam2;
|
|
|
|
// Project three landmarks into three cameras
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
|
|
|
SmartProjectionParams params;
|
|
params.setRankTolerance(50);
|
|
params.setDegeneracyMode(gtsam::HANDLE_INFINITY);
|
|
|
|
SmartFactor::shared_ptr smartFactor1(
|
|
new SmartFactor(model, sharedK2, params));
|
|
smartFactor1->add(measurements_cam1, views);
|
|
|
|
SmartFactor::shared_ptr smartFactor2(
|
|
new SmartFactor(model, sharedK2, params));
|
|
smartFactor2->add(measurements_cam2, views);
|
|
|
|
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
|
const SharedDiagonal noisePriorTranslation = noiseModel::Isotropic::Sigma(3, 0.10);
|
|
Point3 positionPrior = Point3(0, 0, 1);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.push_back(smartFactor1);
|
|
graph.push_back(smartFactor2);
|
|
graph.addPrior(x1, cam1.pose(), noisePrior);
|
|
graph.emplace_shared<PoseTranslationPrior<Pose3> >(x2, positionPrior, noisePriorTranslation);
|
|
graph.emplace_shared<PoseTranslationPrior<Pose3> >(x3, positionPrior, noisePriorTranslation);
|
|
|
|
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
|
Point3(0.1, 0.1, 0.1)); // smaller noise
|
|
Values values;
|
|
values.insert(x1, cam1.pose());
|
|
values.insert(x2, pose2 * noise_pose);
|
|
values.insert(x3, pose3 * noise_pose);
|
|
|
|
// params.verbosityLM = LevenbergMarquardtParams::SUMMARY;
|
|
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
|
Values result = optimizer.optimize();
|
|
EXPECT(assert_equal(pose3, result.at<Pose3>(x3)));
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST( SmartProjectionPoseFactor, 3poses_rotation_only_smart_projection_factor ) {
|
|
|
|
// this test considers a condition in which the cheirality constraint is triggered
|
|
using namespace vanillaPose;
|
|
|
|
KeyVector views {x1, x2, x3};
|
|
|
|
// Two different cameras, at the same position, but different rotations
|
|
Pose3 pose2 = level_pose
|
|
* Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0, 0, 0));
|
|
Pose3 pose3 = pose2 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0, 0, 0));
|
|
Camera cam2(pose2, sharedK);
|
|
Camera cam3(pose3, sharedK);
|
|
|
|
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
|
|
|
|
// Project three landmarks into three cameras
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
|
|
|
SmartProjectionParams params;
|
|
params.setRankTolerance(10);
|
|
params.setDegeneracyMode(gtsam::ZERO_ON_DEGENERACY);
|
|
|
|
SmartFactor::shared_ptr smartFactor1(
|
|
new SmartFactor(model, sharedK, params));
|
|
smartFactor1->add(measurements_cam1, views);
|
|
|
|
SmartFactor::shared_ptr smartFactor2(
|
|
new SmartFactor(model, sharedK, params));
|
|
smartFactor2->add(measurements_cam2, views);
|
|
|
|
SmartFactor::shared_ptr smartFactor3(
|
|
new SmartFactor(model, sharedK, params));
|
|
smartFactor3->add(measurements_cam3, views);
|
|
|
|
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
|
const SharedDiagonal noisePriorTranslation = noiseModel::Isotropic::Sigma(3,
|
|
0.10);
|
|
Point3 positionPrior = Point3(0, 0, 1);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.push_back(smartFactor1);
|
|
graph.push_back(smartFactor2);
|
|
graph.push_back(smartFactor3);
|
|
graph.addPrior(x1, cam1.pose(), noisePrior);
|
|
graph.emplace_shared<PoseTranslationPrior<Pose3> >(x2, positionPrior, noisePriorTranslation);
|
|
graph.emplace_shared<PoseTranslationPrior<Pose3> >(x3, positionPrior, noisePriorTranslation);
|
|
|
|
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
|
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
|
Point3(0.1, 0.1, 0.1)); // smaller noise
|
|
Values values;
|
|
values.insert(x1, cam1.pose());
|
|
values.insert(x2, cam2.pose());
|
|
values.insert(x3, pose3 * noise_pose);
|
|
EXPECT(
|
|
assert_equal(
|
|
Pose3(
|
|
Rot3(0.00563056869, -0.130848107, 0.991386438, -0.991390265,
|
|
-0.130426831, -0.0115837907, 0.130819108, -0.98278564,
|
|
-0.130455917),
|
|
Point3(0.0897734171, -0.110201006, 0.901022872)),
|
|
values.at<Pose3>(x3)));
|
|
|
|
Values result;
|
|
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
|
result = optimizer.optimize();
|
|
|
|
// Since we do not do anything on degenerate instances (ZERO_ON_DEGENERACY)
|
|
// rotation remains the same as the initial guess, but position is fixed by PoseTranslationPrior
|
|
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
|
|
EXPECT(assert_equal(Pose3(values.at<Pose3>(x3).rotation(),
|
|
Point3(0,0,1)), result.at<Pose3>(x3)));
|
|
#else
|
|
// if the check is disabled, no cheirality exception if thrown and the pose converges to the right rotation
|
|
// with modest accuracy since the configuration is essentially degenerate without the translation due to noise (noise_pose)
|
|
EXPECT(assert_equal(pose3, result.at<Pose3>(x3),1e-3));
|
|
#endif
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST( SmartProjectionPoseFactor, Hessian ) {
|
|
|
|
using namespace vanillaPose2;
|
|
|
|
KeyVector views {x1, x2};
|
|
|
|
// Project three landmarks into 2 cameras
|
|
Point2 cam1_uv1 = cam1.project(landmark1);
|
|
Point2 cam2_uv1 = cam2.project(landmark1);
|
|
Point2Vector measurements_cam1;
|
|
measurements_cam1.push_back(cam1_uv1);
|
|
measurements_cam1.push_back(cam2_uv1);
|
|
|
|
SmartFactor::shared_ptr smartFactor1(new SmartFactor(model, sharedK2));
|
|
smartFactor1->add(measurements_cam1, views);
|
|
|
|
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 10, 0., -M_PI / 10),
|
|
Point3(0.5, 0.1, 0.3));
|
|
Values values;
|
|
values.insert(x1, cam1.pose());
|
|
values.insert(x2, cam2.pose());
|
|
|
|
boost::shared_ptr<GaussianFactor> factor = smartFactor1->linearize(values);
|
|
|
|
// compute triangulation from linearization point
|
|
// compute reprojection errors (sum squared)
|
|
// compare with factor.info(): the bottom right element is the squared sum of the reprojection errors (normalized by the covariance)
|
|
// check that it is correctly scaled when using noiseProjection = [1/4 0; 0 1/4]
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST( SmartProjectionPoseFactor, HessianWithRotation ) {
|
|
// cout << " ************************ SmartProjectionPoseFactor: rotated Hessian **********************" << endl;
|
|
|
|
using namespace vanillaPose;
|
|
|
|
KeyVector views {x1, x2, x3};
|
|
|
|
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
|
|
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
|
|
|
SmartFactor::shared_ptr smartFactorInstance(new SmartFactor(model, sharedK));
|
|
smartFactorInstance->add(measurements_cam1, views);
|
|
|
|
Values values;
|
|
values.insert(x1, cam1.pose());
|
|
values.insert(x2, cam2.pose());
|
|
values.insert(x3, cam3.pose());
|
|
|
|
boost::shared_ptr<GaussianFactor> factor = smartFactorInstance->linearize(
|
|
values);
|
|
|
|
Pose3 poseDrift = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 0));
|
|
|
|
Values rotValues;
|
|
rotValues.insert(x1, poseDrift.compose(level_pose));
|
|
rotValues.insert(x2, poseDrift.compose(pose_right));
|
|
rotValues.insert(x3, poseDrift.compose(pose_above));
|
|
|
|
boost::shared_ptr<GaussianFactor> factorRot = smartFactorInstance->linearize(
|
|
rotValues);
|
|
|
|
// Hessian is invariant to rotations in the nondegenerate case
|
|
EXPECT(assert_equal(factor->information(), factorRot->information(), 1e-7));
|
|
|
|
Pose3 poseDrift2 = Pose3(Rot3::Ypr(-M_PI / 2, -M_PI / 3, -M_PI / 2),
|
|
Point3(10, -4, 5));
|
|
|
|
Values tranValues;
|
|
tranValues.insert(x1, poseDrift2.compose(level_pose));
|
|
tranValues.insert(x2, poseDrift2.compose(pose_right));
|
|
tranValues.insert(x3, poseDrift2.compose(pose_above));
|
|
|
|
boost::shared_ptr<GaussianFactor> factorRotTran =
|
|
smartFactorInstance->linearize(tranValues);
|
|
|
|
// Hessian is invariant to rotations and translations in the nondegenerate case
|
|
EXPECT(assert_equal(factor->information(), factorRotTran->information(), 1e-7));
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST( SmartProjectionPoseFactor, HessianWithRotationDegenerate ) {
|
|
|
|
using namespace vanillaPose2;
|
|
|
|
KeyVector views {x1, x2, x3};
|
|
|
|
// All cameras have the same pose so will be degenerate !
|
|
Camera cam2(level_pose, sharedK2);
|
|
Camera cam3(level_pose, sharedK2);
|
|
|
|
Point2Vector measurements_cam1;
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
|
|
|
SmartFactor::shared_ptr smartFactor(new SmartFactor(model, sharedK2));
|
|
smartFactor->add(measurements_cam1, views);
|
|
|
|
Values values;
|
|
values.insert(x1, cam1.pose());
|
|
values.insert(x2, cam2.pose());
|
|
values.insert(x3, cam3.pose());
|
|
|
|
boost::shared_ptr<GaussianFactor> factor = smartFactor->linearize(values);
|
|
|
|
Pose3 poseDrift = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 0));
|
|
|
|
Values rotValues;
|
|
rotValues.insert(x1, poseDrift.compose(level_pose));
|
|
rotValues.insert(x2, poseDrift.compose(level_pose));
|
|
rotValues.insert(x3, poseDrift.compose(level_pose));
|
|
|
|
boost::shared_ptr<GaussianFactor> factorRot = //
|
|
smartFactor->linearize(rotValues);
|
|
|
|
// Hessian is invariant to rotations in the nondegenerate case
|
|
EXPECT(assert_equal(factor->information(), factorRot->information(), 1e-7));
|
|
|
|
Pose3 poseDrift2 = Pose3(Rot3::Ypr(-M_PI / 2, -M_PI / 3, -M_PI / 2),
|
|
Point3(10, -4, 5));
|
|
|
|
Values tranValues;
|
|
tranValues.insert(x1, poseDrift2.compose(level_pose));
|
|
tranValues.insert(x2, poseDrift2.compose(level_pose));
|
|
tranValues.insert(x3, poseDrift2.compose(level_pose));
|
|
|
|
boost::shared_ptr<GaussianFactor> factorRotTran = smartFactor->linearize(
|
|
tranValues);
|
|
|
|
// Hessian is invariant to rotations and translations in the nondegenerate case
|
|
EXPECT(assert_equal(factor->information(), factorRotTran->information(), 1e-7));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( SmartProjectionPoseFactor, ConstructorWithCal3Bundler) {
|
|
using namespace bundlerPose;
|
|
SmartProjectionParams params;
|
|
params.setDegeneracyMode(gtsam::ZERO_ON_DEGENERACY);
|
|
SmartFactor factor(model, sharedBundlerK, params);
|
|
factor.add(measurement1, x1);
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST( SmartProjectionPoseFactor, Cal3Bundler ) {
|
|
|
|
using namespace bundlerPose;
|
|
|
|
// three landmarks ~5 meters in front of camera
|
|
Point3 landmark3(3, 0, 3.0);
|
|
|
|
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
|
|
|
|
// Project three landmarks into three cameras
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
|
|
|
KeyVector views {x1, x2, x3};
|
|
|
|
SmartFactor::shared_ptr smartFactor1(new SmartFactor(model, sharedBundlerK));
|
|
smartFactor1->add(measurements_cam1, views);
|
|
|
|
SmartFactor::shared_ptr smartFactor2(new SmartFactor(model, sharedBundlerK));
|
|
smartFactor2->add(measurements_cam2, views);
|
|
|
|
SmartFactor::shared_ptr smartFactor3(new SmartFactor(model, sharedBundlerK));
|
|
smartFactor3->add(measurements_cam3, views);
|
|
|
|
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.push_back(smartFactor1);
|
|
graph.push_back(smartFactor2);
|
|
graph.push_back(smartFactor3);
|
|
graph.addPrior(x1, cam1.pose(), noisePrior);
|
|
graph.addPrior(x2, cam2.pose(), noisePrior);
|
|
|
|
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
|
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
|
Point3(0.1, 0.1, 0.1)); // smaller noise
|
|
Values values;
|
|
values.insert(x1, cam1.pose());
|
|
values.insert(x2, cam2.pose());
|
|
// initialize third pose with some noise, we expect it to move back to original pose_above
|
|
values.insert(x3, pose_above * noise_pose);
|
|
EXPECT(
|
|
assert_equal(
|
|
Pose3(
|
|
Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
|
|
-0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
|
|
Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
|
|
|
|
Values result;
|
|
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
|
result = optimizer.optimize();
|
|
EXPECT(assert_equal(cam3.pose(), result.at<Pose3>(x3), 1e-6));
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST( SmartProjectionPoseFactor, Cal3BundlerRotationOnly ) {
|
|
|
|
using namespace bundlerPose;
|
|
|
|
KeyVector views {x1, x2, x3};
|
|
|
|
// Two different cameras
|
|
Pose3 pose2 = level_pose
|
|
* Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0, 0, 0));
|
|
Pose3 pose3 = pose2 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0, 0, 0));
|
|
Camera cam2(pose2, sharedBundlerK);
|
|
Camera cam3(pose3, sharedBundlerK);
|
|
|
|
// landmark3 at 3 meters now
|
|
Point3 landmark3(3, 0, 3.0);
|
|
|
|
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
|
|
|
|
// Project three landmarks into three cameras
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
|
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
|
|
|
SmartProjectionParams params;
|
|
params.setRankTolerance(10);
|
|
params.setDegeneracyMode(gtsam::ZERO_ON_DEGENERACY);
|
|
|
|
SmartFactor::shared_ptr smartFactor1(
|
|
new SmartFactor(model, sharedBundlerK, params));
|
|
smartFactor1->add(measurements_cam1, views);
|
|
|
|
SmartFactor::shared_ptr smartFactor2(
|
|
new SmartFactor(model, sharedBundlerK, params));
|
|
smartFactor2->add(measurements_cam2, views);
|
|
|
|
SmartFactor::shared_ptr smartFactor3(
|
|
new SmartFactor(model, sharedBundlerK, params));
|
|
smartFactor3->add(measurements_cam3, views);
|
|
|
|
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
|
const SharedDiagonal noisePriorTranslation = noiseModel::Isotropic::Sigma(3,
|
|
0.10);
|
|
Point3 positionPrior = Point3(0, 0, 1);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.push_back(smartFactor1);
|
|
graph.push_back(smartFactor2);
|
|
graph.push_back(smartFactor3);
|
|
graph.addPrior(x1, cam1.pose(), noisePrior);
|
|
graph.emplace_shared<PoseTranslationPrior<Pose3> >(x2, positionPrior, noisePriorTranslation);
|
|
graph.emplace_shared<PoseTranslationPrior<Pose3> >(x3, positionPrior, noisePriorTranslation);
|
|
|
|
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
|
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
|
Point3(0.1, 0.1, 0.1)); // smaller noise
|
|
Values values;
|
|
values.insert(x1, cam1.pose());
|
|
values.insert(x2, cam2.pose());
|
|
// initialize third pose with some noise, we expect it to move back to original pose_above
|
|
values.insert(x3, pose3 * noise_pose);
|
|
EXPECT(
|
|
assert_equal(
|
|
Pose3(
|
|
Rot3(0.00563056869, -0.130848107, 0.991386438, -0.991390265,
|
|
-0.130426831, -0.0115837907, 0.130819108, -0.98278564,
|
|
-0.130455917),
|
|
Point3(0.0897734171, -0.110201006, 0.901022872)),
|
|
values.at<Pose3>(x3)));
|
|
|
|
Values result;
|
|
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
|
result = optimizer.optimize();
|
|
|
|
EXPECT(
|
|
assert_equal(
|
|
Pose3(
|
|
Rot3(0.00563056869, -0.130848107, 0.991386438, -0.991390265,
|
|
-0.130426831, -0.0115837907, 0.130819108, -0.98278564,
|
|
-0.130455917),
|
|
Point3(0.0897734171, -0.110201006, 0.901022872)),
|
|
values.at<Pose3>(x3)));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Constrained, "gtsam_noiseModel_Constrained");
|
|
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Diagonal, "gtsam_noiseModel_Diagonal");
|
|
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Gaussian, "gtsam_noiseModel_Gaussian");
|
|
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Unit, "gtsam_noiseModel_Unit");
|
|
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Isotropic, "gtsam_noiseModel_Isotropic");
|
|
BOOST_CLASS_EXPORT_GUID(gtsam::SharedNoiseModel, "gtsam_SharedNoiseModel");
|
|
BOOST_CLASS_EXPORT_GUID(gtsam::SharedDiagonal, "gtsam_SharedDiagonal");
|
|
|
|
TEST(SmartProjectionPoseFactor, serialize) {
|
|
using namespace vanillaPose;
|
|
using namespace gtsam::serializationTestHelpers;
|
|
SmartProjectionParams params;
|
|
params.setRankTolerance(rankTol);
|
|
SmartFactor factor(model, sharedK, params);
|
|
|
|
EXPECT(equalsObj(factor));
|
|
EXPECT(equalsXML(factor));
|
|
EXPECT(equalsBinary(factor));
|
|
}
|
|
|
|
TEST(SmartProjectionPoseFactor, serialize2) {
|
|
using namespace vanillaPose;
|
|
using namespace gtsam::serializationTestHelpers;
|
|
SmartProjectionParams params;
|
|
params.setRankTolerance(rankTol);
|
|
Pose3 bts;
|
|
SmartFactor factor(model, sharedK, bts, params);
|
|
|
|
// insert some measurments
|
|
KeyVector key_view;
|
|
Point2Vector meas_view;
|
|
key_view.push_back(Symbol('x', 1));
|
|
meas_view.push_back(Point2(10, 10));
|
|
factor.add(meas_view, key_view);
|
|
|
|
EXPECT(equalsObj(factor));
|
|
EXPECT(equalsXML(factor));
|
|
EXPECT(equalsBinary(factor));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() {
|
|
TestResult tr;
|
|
return TestRegistry::runAllTests(tr);
|
|
}
|
|
/* ************************************************************************* */
|
|
|