gtsam/gtsam/geometry/Pose3.h

447 lines
14 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
*@file Pose3.h
*@brief 3D Pose
*/
// \callgraph
#pragma once
#include <gtsam/config.h>
#include <gtsam/geometry/BearingRange.h>
#include <gtsam/geometry/Point3.h>
#include <gtsam/geometry/Rot3.h>
#include <gtsam/base/Lie.h>
namespace gtsam {
class Pose2;
// forward declare
/**
* A 3D pose (R,t) : (Rot3,Point3)
* @ingroup geometry
* \nosubgrouping
*/
class GTSAM_EXPORT Pose3: public LieGroup<Pose3, 6> {
public:
/** Pose Concept requirements */
typedef Rot3 Rotation;
typedef Point3 Translation;
private:
Rot3 R_; ///< Rotation gRp, between global and pose frame
Point3 t_; ///< Translation gPp, from global origin to pose frame origin
public:
/// @name Standard Constructors
/// @{
/** Default constructor is origin */
Pose3() : R_(traits<Rot3>::Identity()), t_(traits<Point3>::Identity()) {}
/** Copy constructor */
Pose3(const Pose3& pose) :
R_(pose.R_), t_(pose.t_) {
}
/** Construct from R,t */
Pose3(const Rot3& R, const Point3& t) :
R_(R), t_(t) {
}
/** Construct from Pose2 */
explicit Pose3(const Pose2& pose2);
/** Constructor from 4*4 matrix */
Pose3(const Matrix &T) :
R_(T(0, 0), T(0, 1), T(0, 2), T(1, 0), T(1, 1), T(1, 2), T(2, 0), T(2, 1),
T(2, 2)), t_(T(0, 3), T(1, 3), T(2, 3)) {
}
/// Named constructor with derivatives
static Pose3 Create(const Rot3& R, const Point3& t,
OptionalJacobian<6, 3> HR = {},
OptionalJacobian<6, 3> Ht = {});
/**
* Create Pose3 by aligning two point pairs
* A pose aTb is estimated between pairs (a_point, b_point) such that a_point = aTb * b_point
* Note this allows for noise on the points but in that case the mapping will not be exact.
*/
static std::optional<Pose3> Align(const Point3Pairs& abPointPairs);
// Version of Pose3::Align that takes 2 matrices.
static std::optional<Pose3> Align(const Matrix& a, const Matrix& b);
/// @}
/// @name Testable
/// @{
/// print with optional string
void print(const std::string& s = "") const;
/// assert equality up to a tolerance
bool equals(const Pose3& pose, double tol = 1e-9) const;
/// @}
/// @name Group
/// @{
/// identity for group operation
static Pose3 Identity() {
return Pose3();
}
/// inverse transformation with derivatives
Pose3 inverse() const;
/// compose syntactic sugar
Pose3 operator*(const Pose3& T) const {
return Pose3(R_ * T.R_, t_ + R_ * T.t_);
}
/**
* Interpolate between two poses via individual rotation and translation
* interpolation.
*
* The default "interpolate" method defined in Lie.h minimizes the geodesic
* distance on the manifold, leading to a screw motion interpolation in
* Cartesian space, which might not be what is expected.
* In contrast, this method executes a straight line interpolation for the
* translation, while still using interpolate (aka "slerp") for the rotational
* component. This might be more intuitive in many applications.
*
* @param T End point of interpolation.
* @param t A value in [0, 1].
*/
Pose3 interpolateRt(const Pose3& T, double t) const;
/// @}
/// @name Lie Group
/// @{
/// Exponential map at identity - create a rotation from canonical coordinates \f$ [R_x,R_y,R_z,T_x,T_y,T_z] \f$
static Pose3 Expmap(const Vector6& xi, OptionalJacobian<6, 6> Hxi = {});
/// Log map at identity - return the canonical coordinates \f$ [R_x,R_y,R_z,T_x,T_y,T_z] \f$ of this rotation
static Vector6 Logmap(const Pose3& pose, OptionalJacobian<6, 6> Hpose = {});
/**
* Calculate Adjoint map, transforming a twist in this pose's (i.e, body) frame to the world spatial frame
* Ad_pose is 6*6 matrix that when applied to twist xi \f$ [R_x,R_y,R_z,T_x,T_y,T_z] \f$, returns Ad_pose(xi)
*/
Matrix6 AdjointMap() const;
/**
* Apply this pose's AdjointMap Ad_g to a twist \f$ \xi_b \f$, i.e. a
* body-fixed velocity, transforming it to the spatial frame
* \f$ \xi^s = g*\xi^b*g^{-1} = Ad_g * \xi^b \f$
* Note that H_xib = AdjointMap()
*/
Vector6 Adjoint(const Vector6& xi_b,
OptionalJacobian<6, 6> H_this = {},
OptionalJacobian<6, 6> H_xib = {}) const;
/// The dual version of Adjoint
Vector6 AdjointTranspose(const Vector6& x,
OptionalJacobian<6, 6> H_this = {},
OptionalJacobian<6, 6> H_x = {}) const;
/**
* Compute the [ad(w,v)] operator as defined in [Kobilarov09siggraph], pg 11
* [ad(w,v)] = [w^, zero3; v^, w^]
* Note that this is the matrix representation of the adjoint operator for se3 Lie algebra,
* aka the Lie bracket, and also the derivative of Adjoint map for the Lie group SE3.
*
* Let \f$ \hat{\xi}_i \f$ be the se3 Lie algebra, and \f$ \hat{\xi}_i^\vee = \xi_i = [\omega_i,v_i] \in \mathbb{R}^6\f$ be its
* vector representation.
* We have the following relationship:
* \f$ [\hat{\xi}_1,\hat{\xi}_2]^\vee = ad_{\xi_1}(\xi_2) = [ad_{(\omega_1,v_1)}]*\xi_2 \f$
*
* We use this to compute the discrete version of the inverse right-trivialized tangent map,
* and its inverse transpose in the discrete Euler Poincare' (DEP) operator.
*
*/
static Matrix6 adjointMap(const Vector6& xi);
/**
* Action of the adjointMap on a Lie-algebra vector y, with optional derivatives
*/
static Vector6 adjoint(const Vector6& xi, const Vector6& y,
OptionalJacobian<6, 6> Hxi = {},
OptionalJacobian<6, 6> H_y = {});
// temporary fix for wrappers until case issue is resolved
static Matrix6 adjointMap_(const Vector6 &xi) { return adjointMap(xi);}
static Vector6 adjoint_(const Vector6 &xi, const Vector6 &y) { return adjoint(xi, y);}
/**
* The dual version of adjoint action, acting on the dual space of the Lie-algebra vector space.
*/
static Vector6 adjointTranspose(const Vector6& xi, const Vector6& y,
OptionalJacobian<6, 6> Hxi = {},
OptionalJacobian<6, 6> H_y = {});
/// Derivative of Expmap
static Matrix6 ExpmapDerivative(const Vector6& xi);
/// Derivative of Logmap
static Matrix6 LogmapDerivative(const Pose3& xi);
// Chart at origin, depends on compile-time flag GTSAM_POSE3_EXPMAP
struct GTSAM_EXPORT ChartAtOrigin {
static Pose3 Retract(const Vector6& xi, ChartJacobian Hxi = {});
static Vector6 Local(const Pose3& pose, ChartJacobian Hpose = {});
};
/**
* Compute the 3x3 bottom-left block Q of SE3 Expmap right derivative matrix
* J_r(xi) = [J_(w) Z_3x3;
* Q_r J_(w)]
* where J_(w) is the SO3 Expmap right derivative.
* (see Chirikjian11book2, pg 44, eq 10.95.
* The closed-form formula is identical to formula 102 in Barfoot14tro where
* Q_l of the SE3 Expmap left derivative matrix is given.
*/
static Matrix3 ComputeQforExpmapDerivative(
const Vector6& xi, double nearZeroThreshold = 1e-5);
using LieGroup<Pose3, 6>::inverse; // version with derivative
/**
* wedge for Pose3:
* @param xi 6-dim twist (omega,v) where
* omega = (wx,wy,wz) 3D angular velocity
* v (vx,vy,vz) = 3D velocity
* @return xihat, 4*4 element of Lie algebra that can be exponentiated
*/
static Matrix wedge(double wx, double wy, double wz, double vx, double vy,
double vz) {
return (Matrix(4, 4) << 0., -wz, wy, vx, wz, 0., -wx, vy, -wy, wx, 0., vz, 0., 0., 0., 0.).finished();
}
/// @}
/// @name Group Action on Point3
/// @{
/**
* @brief takes point in Pose coordinates and transforms it to world coordinates
* @param point point in Pose coordinates
* @param Hself optional 3*6 Jacobian wrpt this pose
* @param Hpoint optional 3*3 Jacobian wrpt point
* @return point in world coordinates
*/
Point3 transformFrom(const Point3& point, OptionalJacobian<3, 6> Hself =
{}, OptionalJacobian<3, 3> Hpoint = {}) const;
/**
* @brief transform many points in Pose coordinates and transform to world.
* @param points 3*N matrix in Pose coordinates
* @return points in world coordinates, as 3*N Matrix
*/
Matrix transformFrom(const Matrix& points) const;
/** syntactic sugar for transformFrom */
inline Point3 operator*(const Point3& point) const {
return transformFrom(point);
}
/**
* @brief takes point in world coordinates and transforms it to Pose coordinates
* @param point point in world coordinates
* @param Hself optional 3*6 Jacobian wrpt this pose
* @param Hpoint optional 3*3 Jacobian wrpt point
* @return point in Pose coordinates
*/
Point3 transformTo(const Point3& point, OptionalJacobian<3, 6> Hself =
{}, OptionalJacobian<3, 3> Hpoint = {}) const;
/**
* @brief transform many points in world coordinates and transform to Pose.
* @param points 3*N matrix in world coordinates
* @return points in Pose coordinates, as 3*N Matrix
*/
Matrix transformTo(const Matrix& points) const;
/// @}
/// @name Standard Interface
/// @{
/// get rotation
const Rot3& rotation(OptionalJacobian<3, 6> Hself = {}) const;
/// get translation
const Point3& translation(OptionalJacobian<3, 6> Hself = {}) const;
/// get x
double x() const {
return t_.x();
}
/// get y
double y() const {
return t_.y();
}
/// get z
double z() const {
return t_.z();
}
/** convert to 4*4 matrix */
Matrix4 matrix() const;
/**
* Assuming self == wTa, takes a pose aTb in local coordinates
* and transforms it to world coordinates wTb = wTa * aTb.
* This is identical to compose.
*/
Pose3 transformPoseFrom(const Pose3& aTb, OptionalJacobian<6, 6> Hself = {},
OptionalJacobian<6, 6> HaTb = {}) const;
/**
* Assuming self == wTa, takes a pose wTb in world coordinates
* and transforms it to local coordinates aTb = inv(wTa) * wTb
*/
Pose3 transformPoseTo(const Pose3& wTb, OptionalJacobian<6, 6> Hself = {},
OptionalJacobian<6, 6> HwTb = {}) const;
/**
* Calculate range to a landmark
* @param point 3D location of landmark
* @return range (double)
*/
double range(const Point3& point, OptionalJacobian<1, 6> Hself = {},
OptionalJacobian<1, 3> Hpoint = {}) const;
/**
* Calculate range to another pose
* @param pose Other SO(3) pose
* @return range (double)
*/
double range(const Pose3& pose, OptionalJacobian<1, 6> Hself = {},
OptionalJacobian<1, 6> Hpose = {}) const;
/**
* Calculate bearing to a landmark
* @param point 3D location of landmark
* @return bearing (Unit3)
*/
Unit3 bearing(const Point3& point, OptionalJacobian<2, 6> Hself = {},
OptionalJacobian<2, 3> Hpoint = {}) const;
/**
* Calculate bearing to another pose
* @param other 3D location and orientation of other body. The orientation
* information is ignored.
* @return bearing (Unit3)
*/
Unit3 bearing(const Pose3& pose, OptionalJacobian<2, 6> Hself = {},
OptionalJacobian<2, 6> Hpose = {}) const;
/// @}
/// @name Advanced Interface
/// @{
/**
* Return the start and end indices (inclusive) of the translation component of the
* exponential map parameterization
* @return a pair of [start, end] indices into the tangent space vector
*/
inline static std::pair<size_t, size_t> translationInterval() {
return {3, 5};
}
/**
* Return the start and end indices (inclusive) of the rotation component of the
* exponential map parameterization
* @return a pair of [start, end] indices into the tangent space vector
*/
static std::pair<size_t, size_t> rotationInterval() {
return {0, 2};
}
/**
* @brief Spherical Linear interpolation between *this and other
* @param s a value between 0 and 1.5
* @param other final point of interpolation geodesic on manifold
*/
Pose3 slerp(double t, const Pose3& other, OptionalJacobian<6, 6> Hx = {},
OptionalJacobian<6, 6> Hy = {}) const;
/// Output stream operator
GTSAM_EXPORT
friend std::ostream &operator<<(std::ostream &os, const Pose3& p);
private:
#ifdef GTSAM_ENABLE_BOOST_SERIALIZATION
/** Serialization function */
friend class boost::serialization::access;
template<class Archive>
void serialize(Archive & ar, const unsigned int /*version*/) {
ar & BOOST_SERIALIZATION_NVP(R_);
ar & BOOST_SERIALIZATION_NVP(t_);
}
#endif
/// @}
#ifdef GTSAM_USE_QUATERNIONS
// Align if we are using Quaternions
public:
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
#endif
};
// Pose3 class
/**
* wedge for Pose3:
* @param xi 6-dim twist (omega,v) where
* omega = 3D angular velocity
* v = 3D velocity
* @return xihat, 4*4 element of Lie algebra that can be exponentiated
*/
template<>
inline Matrix wedge<Pose3>(const Vector& xi) {
return Pose3::wedge(xi(0), xi(1), xi(2), xi(3), xi(4), xi(5));
}
// Convenience typedef
using Pose3Pair = std::pair<Pose3, Pose3>;
using Pose3Pairs = std::vector<std::pair<Pose3, Pose3> >;
// For MATLAB wrapper
typedef std::vector<Pose3> Pose3Vector;
template <>
struct traits<Pose3> : public internal::LieGroup<Pose3> {};
template <>
struct traits<const Pose3> : public internal::LieGroup<Pose3> {};
// bearing and range traits, used in RangeFactor
template <>
struct Bearing<Pose3, Point3> : HasBearing<Pose3, Point3, Unit3> {};
template<>
struct Bearing<Pose3, Pose3> : HasBearing<Pose3, Pose3, Unit3> {};
template <typename T>
struct Range<Pose3, T> : HasRange<Pose3, T, double> {};
} // namespace gtsam