232 lines
8.0 KiB
C++
232 lines
8.0 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file Rot3M.cpp
|
|
* @brief Rotation (internal: 3*3 matrix representation*)
|
|
* @author Alireza Fathi
|
|
* @author Christian Potthast
|
|
* @author Frank Dellaert
|
|
* @author Richard Roberts
|
|
*/
|
|
|
|
#include <gtsam/config.h> // Get GTSAM_USE_QUATERNIONS macro
|
|
|
|
#ifndef GTSAM_USE_QUATERNIONS
|
|
|
|
#include <gtsam/geometry/Rot3.h>
|
|
#include <gtsam/geometry/SO3.h>
|
|
#include <boost/math/constants/constants.hpp>
|
|
#include <cmath>
|
|
|
|
using namespace std;
|
|
|
|
namespace gtsam {
|
|
|
|
/* ************************************************************************* */
|
|
Rot3::Rot3() : rot_(I_3x3) {}
|
|
|
|
/* ************************************************************************* */
|
|
Rot3::Rot3(const Point3& col1, const Point3& col2, const Point3& col3) {
|
|
Matrix3 R;
|
|
R << col1, col2, col3;
|
|
rot_ = SO3(R);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Rot3::Rot3(double R11, double R12, double R13, double R21, double R22,
|
|
double R23, double R31, double R32, double R33) {
|
|
Matrix3 R;
|
|
R << R11, R12, R13, R21, R22, R23, R31, R32, R33;
|
|
rot_ = SO3(R);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Rot3::Rot3(const gtsam::Quaternion& q) : rot_(q.toRotationMatrix()) {
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Rot3 Rot3::Rx(double t) {
|
|
double st = sin(t), ct = cos(t);
|
|
return Rot3(
|
|
1, 0, 0,
|
|
0, ct,-st,
|
|
0, st, ct);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Rot3 Rot3::Ry(double t) {
|
|
double st = sin(t), ct = cos(t);
|
|
return Rot3(
|
|
ct, 0, st,
|
|
0, 1, 0,
|
|
-st, 0, ct);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Rot3 Rot3::Rz(double t) {
|
|
double st = sin(t), ct = cos(t);
|
|
return Rot3(
|
|
ct,-st, 0,
|
|
st, ct, 0,
|
|
0, 0, 1);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Considerably faster than composing matrices above !
|
|
Rot3 Rot3::RzRyRx(double x, double y, double z, OptionalJacobian<3, 1> Hx,
|
|
OptionalJacobian<3, 1> Hy, OptionalJacobian<3, 1> Hz) {
|
|
double cx=cos(x),sx=sin(x);
|
|
double cy=cos(y),sy=sin(y);
|
|
double cz=cos(z),sz=sin(z);
|
|
double ss_ = sx * sy;
|
|
double cs_ = cx * sy;
|
|
double sc_ = sx * cy;
|
|
double cc_ = cx * cy;
|
|
double c_s = cx * sz;
|
|
double s_s = sx * sz;
|
|
double _cs = cy * sz;
|
|
double _cc = cy * cz;
|
|
double s_c = sx * cz;
|
|
double c_c = cx * cz;
|
|
double ssc = ss_ * cz, csc = cs_ * cz, sss = ss_ * sz, css = cs_ * sz;
|
|
if (Hx) (*Hx) << 1, 0, 0;
|
|
if (Hy) (*Hy) << 0, cx, -sx;
|
|
if (Hz) (*Hz) << -sy, sc_, cc_;
|
|
return Rot3(
|
|
_cc,- c_s + ssc, s_s + csc,
|
|
_cs, c_c + sss, -s_c + css,
|
|
-sy, sc_, cc_
|
|
);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Rot3 Rot3::normalized() const {
|
|
/// Implementation from here: https://stackoverflow.com/a/23082112/1236990
|
|
|
|
/// Essentially, this computes the orthogonalization error, distributes the
|
|
/// error to the x and y rows, and then performs a Taylor expansion to
|
|
/// orthogonalize.
|
|
|
|
Matrix3 rot = rot_.matrix(), rot_orth;
|
|
|
|
// Check if determinant is already 1.
|
|
// If yes, then return the current Rot3.
|
|
if (std::fabs(rot.determinant()-1) < 1e-12) return Rot3(rot_);
|
|
|
|
Vector3 x = rot.block<1, 3>(0, 0), y = rot.block<1, 3>(1, 0);
|
|
double error = x.dot(y);
|
|
|
|
Vector3 x_ort = x - (error / 2) * y, y_ort = y - (error / 2) * x;
|
|
Vector3 z_ort = x_ort.cross(y_ort);
|
|
|
|
rot_orth.block<1, 3>(0, 0) = 0.5 * (3 - x_ort.dot(x_ort)) * x_ort;
|
|
rot_orth.block<1, 3>(1, 0) = 0.5 * (3 - y_ort.dot(y_ort)) * y_ort;
|
|
rot_orth.block<1, 3>(2, 0) = 0.5 * (3 - z_ort.dot(z_ort)) * z_ort;
|
|
|
|
return Rot3(rot_orth);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Rot3 Rot3::operator*(const Rot3& R2) const {
|
|
return Rot3(rot_*R2.rot_);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix3 Rot3::transpose() const {
|
|
return rot_.matrix().transpose();
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Point3 Rot3::rotate(const Point3& p,
|
|
OptionalJacobian<3,3> H1, OptionalJacobian<3,3> H2) const {
|
|
if (H1) *H1 = rot_.matrix() * skewSymmetric(-p.x(), -p.y(), -p.z());
|
|
if (H2) *H2 = rot_.matrix();
|
|
return rot_.matrix() * p;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Log map at identity - return the canonical coordinates of this rotation
|
|
Vector3 Rot3::Logmap(const Rot3& R, OptionalJacobian<3,3> H) {
|
|
return SO3::Logmap(R.rot_,H);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Rot3 Rot3::CayleyChart::Retract(const Vector3& omega, OptionalJacobian<3,3> H) {
|
|
if (H) throw std::runtime_error("Rot3::CayleyChart::Retract Derivative");
|
|
const double x = omega(0), y = omega(1), z = omega(2);
|
|
const double x2 = x * x, y2 = y * y, z2 = z * z;
|
|
const double xy = x * y, xz = x * z, yz = y * z;
|
|
const double f = 1.0 / (4.0 + x2 + y2 + z2), _2f = 2.0 * f;
|
|
return Rot3((4 + x2 - y2 - z2) * f, (xy - 2 * z) * _2f, (xz + 2 * y) * _2f,
|
|
(xy + 2 * z) * _2f, (4 - x2 + y2 - z2) * f, (yz - 2 * x) * _2f,
|
|
(xz - 2 * y) * _2f, (yz + 2 * x) * _2f, (4 - x2 - y2 + z2) * f);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Vector3 Rot3::CayleyChart::Local(const Rot3& R, OptionalJacobian<3,3> H) {
|
|
if (H) throw std::runtime_error("Rot3::CayleyChart::Local Derivative");
|
|
// Create a fixed-size matrix
|
|
Matrix3 A = R.matrix();
|
|
// Mathematica closed form optimization (procrastination?) gone wild:
|
|
const double a = A(0, 0), b = A(0, 1), c = A(0, 2);
|
|
const double d = A(1, 0), e = A(1, 1), f = A(1, 2);
|
|
const double g = A(2, 0), h = A(2, 1), i = A(2, 2);
|
|
const double di = d * i, ce = c * e, cd = c * d, fg = f * g;
|
|
const double M = 1 + e - f * h + i + e * i;
|
|
const double K = -4.0 / (cd * h + M + a * M - g * (c + ce) - b * (d + di - fg));
|
|
const double x = a * f - cd + f;
|
|
const double y = b * f - ce - c;
|
|
const double z = fg - di - d;
|
|
return K * Vector3(x, y, z);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Rot3 Rot3::ChartAtOrigin::Retract(const Vector3& omega, ChartJacobian H) {
|
|
static const CoordinatesMode mode = ROT3_DEFAULT_COORDINATES_MODE;
|
|
if (mode == Rot3::EXPMAP) return Expmap(omega, H);
|
|
if (mode == Rot3::CAYLEY) return CayleyChart::Retract(omega, H);
|
|
else throw std::runtime_error("Rot3::Retract: unknown mode");
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Vector3 Rot3::ChartAtOrigin::Local(const Rot3& R, ChartJacobian H) {
|
|
static const CoordinatesMode mode = ROT3_DEFAULT_COORDINATES_MODE;
|
|
if (mode == Rot3::EXPMAP) return Logmap(R, H);
|
|
if (mode == Rot3::CAYLEY) return CayleyChart::Local(R, H);
|
|
else throw std::runtime_error("Rot3::Local: unknown mode");
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix3 Rot3::matrix() const {
|
|
return rot_.matrix();
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Point3 Rot3::r1() const { return Point3(rot_.matrix().col(0)); }
|
|
|
|
/* ************************************************************************* */
|
|
Point3 Rot3::r2() const { return Point3(rot_.matrix().col(1)); }
|
|
|
|
/* ************************************************************************* */
|
|
Point3 Rot3::r3() const { return Point3(rot_.matrix().col(2)); }
|
|
|
|
/* ************************************************************************* */
|
|
gtsam::Quaternion Rot3::toQuaternion() const {
|
|
return gtsam::Quaternion(rot_.matrix());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
|
|
} // namespace gtsam
|
|
|
|
#endif
|