gtsam/cpp/testVSLAMFactor.cpp

101 lines
3.2 KiB
C++

/**********************************************************
Written by Frank Dellaert, Nov 2009
**********************************************************/
#include <CppUnitLite/TestHarness.h>
#define GTSAM_MAGIC_KEY
#include "visualSLAM.h"
#include "Point3.h"
#include "Pose3.h"
using namespace std;
using namespace gtsam;
using namespace gtsam::visualSLAM;
// make cube
static Point3
x000(-1, -1, -1), x001(-1, -1, +1), x010(-1, +1, -1), x011(-1, +1, +1),
x100(-1, -1, -1), x101(-1, -1, +1), x110(-1, +1, -1), x111(-1, +1, +1);
// make a realistic calibration matrix
static double fov = 60; // degrees
static size_t w=640,h=480;
static Cal3_S2 K(fov,w,h);
static sharedGaussian sigma(noiseModel::Unit::Create(1));
static shared_ptrK sK(new Cal3_S2(K));
// make cameras
/* ************************************************************************* */
TEST( ProjectionFactor, error )
{
// Create the factor with a measurement that is 3 pixels off in x
Point2 z(323.,240.);
int cameraFrameNumber=1, landmarkNumber=1;
boost::shared_ptr<ProjectionFactor>
factor(new ProjectionFactor(z, sigma, cameraFrameNumber, landmarkNumber, sK));
// For the following configuration, the factor predicts 320,240
Config config;
Rot3 R;Point3 t1(0,0,-6); Pose3 x1(R,t1); config.insert(1, x1);
Point3 l1; config.insert(1, l1);
// Point should project to Point2(320.,240.)
CHECK(assert_equal(Vector_(2, -3.0, 0.0), factor->unwhitenedError(config)));
// Which yields an error of 3^2/2 = 4.5
DOUBLES_EQUAL(4.5,factor->error(config),1e-9);
// Check linearize
Matrix Al1 = Matrix_(2, 3, 61.584, 0., 0., 0., 61.584, 0.);
Matrix Ax1 = Matrix_(2, 6, 0., -369.504, 0., -61.584, 0., 0., 369.504, 0., 0., 0., -61.584, 0.);
Vector b = Vector_(2,3.,0.);
sharedDiagonal probModel1 = noiseModel::Unit::Create(2);
GaussianFactor expected("l1", Al1, "x1", Ax1, b, probModel1);
GaussianFactor::shared_ptr actual = factor->linearize(config);
CHECK(assert_equal(expected,*actual,1e-3));
// linearize graph
Graph graph;
graph.push_back(factor);
GaussianFactorGraph expected_lfg;
expected_lfg.push_back(actual);
GaussianFactorGraph actual_lfg = graph.linearize(config);
CHECK(assert_equal(expected_lfg,actual_lfg));
// expmap on a config
VectorConfig delta;
delta.insert("x1",Vector_(6, 0.,0.,0., 1.,1.,1.));
delta.insert("l1",Vector_(3, 1.,2.,3.));
Config actual_config = expmap(config, delta);
Config expected_config;
Point3 t2(1,1,-5); Pose3 x2(R,t2); expected_config.insert(1, x2);
Point3 l2(1,2,3); expected_config.insert(1, l2);
CHECK(assert_equal(expected_config,actual_config,1e-9));
}
TEST( ProjectionFactor, equals )
{
// Create two identical factors and make sure they're equal
Vector z = Vector_(2,323.,240.);
int cameraFrameNumber=1, landmarkNumber=1;
boost::shared_ptr<ProjectionFactor>
factor1(new ProjectionFactor(z, sigma, cameraFrameNumber, landmarkNumber, sK));
boost::shared_ptr<ProjectionFactor>
factor2(new ProjectionFactor(z, sigma, cameraFrameNumber, landmarkNumber, sK));
CHECK(assert_equal(*factor1, *factor2));
}
/* ************************************************************************* */
int main() {
TestResult tr;
TestRegistry::runAllTests(tr);
return 0;
}
/* ************************************************************************* */