gtsam/cpp/Rot3.cpp

247 lines
7.5 KiB
C++

/**
* @file Rot3.cpp
* @brief Rotation (internal: 3*3 matrix representation*)
* @author Alireza Fathi
* @author Christian Potthast
* @author Frank Dellaert
*/
#include "Rot3.h"
#include "Lie-inl.h"
using namespace std;
namespace gtsam {
/** Explicit instantiation of base class to export members */
INSTANTIATE_LIE(Rot3);
/* ************************************************************************* */
// static member functions to construct rotations
Rot3 Rot3::Rx(double t) {
double st = sin(t), ct = cos(t);
return Rot3(
1, 0, 0,
0, ct,-st,
0, st, ct);
}
Rot3 Rot3::Ry(double t) {
double st = sin(t), ct = cos(t);
return Rot3(
ct, 0, st,
0, 1, 0,
-st, 0, ct);
}
Rot3 Rot3::Rz(double t) {
double st = sin(t), ct = cos(t);
return Rot3(
ct,-st, 0,
st, ct, 0,
0, 0, 1);
}
// Considerably faster than composing matrices above !
Rot3 Rot3::RzRyRx(double x, double y, double z) {
double cx=cos(x),sx=sin(x);
double cy=cos(y),sy=sin(y);
double cz=cos(z),sz=sin(z);
double ss_ = sx * sy;
double cs_ = cx * sy;
double sc_ = sx * cy;
double cc_ = cx * cy;
double c_s = cx * sz;
double s_s = sx * sz;
double _cs = cy * sz;
double _cc = cy * cz;
double s_c = sx * cz;
double c_c = cx * cz;
double ssc = ss_ * cz, csc = cs_ * cz, sss = ss_ * sz, css = cs_ * sz;
return Rot3(
_cc,- c_s + ssc, s_s + csc,
_cs, c_c + sss, -s_c + css,
-sy, sc_, cc_
);
}
/* ************************************************************************* */
bool Rot3::equals(const Rot3 & R, double tol) const {
return equal_with_abs_tol(matrix(), R.matrix(), tol);
}
/* ************************************************************************* */
Matrix Rot3::matrix() const {
double r[] = { r1_.x(), r2_.x(), r3_.x(),
r1_.y(), r2_.y(), r3_.y(),
r1_.z(), r2_.z(), r3_.z() };
return Matrix_(3,3, r);
}
/* ************************************************************************* */
Matrix Rot3::transpose() const {
double r[] = { r1_.x(), r1_.y(), r1_.z(),
r2_.x(), r2_.y(), r2_.z(),
r3_.x(), r3_.y(), r3_.z()};
return Matrix_(3,3, r);
}
/* ************************************************************************* */
Point3 Rot3::column(int index) const{
if(index == 3)
return r3_;
else if (index == 2)
return r2_;
else
return r1_; // default returns r1
}
/* ************************************************************************* */
Vector Rot3::xyz() const {
Matrix I;Vector q;
boost::tie(I,q)=RQ(matrix());
return q;
}
Vector Rot3::ypr() const {
Vector q = xyz();
return Vector_(3,q(2),q(1),q(0));
}
/* ************************************************************************* */
// Log map at identity - return the canonical coordinates of this rotation
inline Vector logmap(const Rot3& R) {
double tr = R.r1().x()+R.r2().y()+R.r3().z();
if (tr==3.0) // when theta = 0, +-2pi, +-4pi, etc.
return zero(3);
else if (tr==-1.0) { // when theta = +-pi, +-3pi, +-5pi, etc.
if(R.r3().z() != -1.0)
return (boost::math::constants::pi<double>() / sqrt(2.0+2.0*R.r3().z())) *
Vector_(3, R.r3().x(), R.r3().y(), 1.0+R.r3().z());
else if(R.r2().y() != -1.0)
return (boost::math::constants::pi<double>() / sqrt(2.0+2.0*R.r2().y())) *
Vector_(3, R.r2().x(), 1.0+R.r2().y(), R.r2().z());
else if(R.r1().x() != -1.0)
return (boost::math::constants::pi<double>() / sqrt(2.0+2.0*R.r1().x())) *
Vector_(3, 1.0+R.r1().x(), R.r1().y(), R.r1().z());
} else {
double theta = acos((tr-1.0)/2.0);
return (theta/2.0/sin(theta))*Vector_(3,
R.r2().z()-R.r3().y(),
R.r3().x()-R.r1().z(),
R.r1().y()-R.r2().x());
}
}
/* ************************************************************************* */
Rot3 rodriguez(const Vector& n, double t) {
double n0 = n(0), n1=n(1), n2=n(2);
double n00 = n0*n0, n11 = n1*n1, n22 = n2*n2;
#ifndef NDEBUG
double l_n = n00+n11+n22;
if (fabs(l_n-1.0)>1e-9) throw domain_error("rodriguez: length of n should be 1");
#endif
double ct = cos(t), st = sin(t), ct_1 = 1 - ct;
double s0 = n0 * st, s1 = n1 * st, s2 = n2 * st;
double C01 = ct_1*n0*n1, C02 = ct_1*n0*n2, C12 = ct_1*n1*n2;
double C00 = ct_1*n00, C11 = ct_1*n11, C22 = ct_1*n22;
Point3 r1 = Point3( ct + C00, s2 + C01, -s1 + C02);
Point3 r2 = Point3(-s2 + C01, ct + C11, s0 + C12);
Point3 r3 = Point3( s1 + C02, -s0 + C12, ct + C22);
return Rot3(r1, r2, r3);
}
/* ************************************************************************* */
Rot3 rodriguez(const Vector& w) {
double t = norm_2(w);
if (t < 1e-5) return Rot3();
return rodriguez(w/t, t);
}
/* ************************************************************************* */
Point3 rotate(const Rot3& R, const Point3& p) {
return R.r1() * p.x() + R.r2() * p.y() + R.r3() * p.z();
}
/* ************************************************************************* */
Matrix Drotate1(const Rot3& R, const Point3& p) {
Point3 q = R * p;
return skewSymmetric(-q.x(), -q.y(), -q.z());
}
/* ************************************************************************* */
Matrix Drotate2(const Rot3& R) {
return R.matrix();
}
/* ************************************************************************* */
Point3 unrotate(const Rot3& R, const Point3& p) {
return Point3(
R.r1().x() * p.x() + R.r1().y() * p.y() + R.r1().z() * p.z(),
R.r2().x() * p.x() + R.r2().y() * p.y() + R.r2().z() * p.z(),
R.r3().x() * p.x() + R.r3().y() * p.y() + R.r3().z() * p.z()
);
}
/* ************************************************************************* */
/** see libraries/caml/geometry/math.lyx, derivative of unrotate */
/* ************************************************************************* */
Matrix Dunrotate1(const Rot3 & R, const Point3 & p) {
Point3 q = unrotate(R,p);
return skewSymmetric(q.x(), q.y(), q.z()) * R.transpose();
}
/* ************************************************************************* */
Matrix Dunrotate2(const Rot3 & R) {
return R.transpose();
}
/* ************************************************************************* */
Matrix Dcompose1(const Rot3& R1, const Rot3& R2){
return eye(3);
}
/* ************************************************************************* */
Matrix Dcompose2(const Rot3& R1, const Rot3& R2){
return R1.matrix();
}
/* ************************************************************************* */
Matrix Dbetween1(const Rot3& R1, const Rot3& R2){
return -between(R1,R2).matrix();
}
/* ************************************************************************* */
Matrix Dbetween2(const Rot3& R1, const Rot3& R2){
return eye(3);
}
/* ************************************************************************* */
pair<Matrix, Vector> RQ(const Matrix& A) {
double x = -atan2(-A(2, 1), A(2, 2));
Rot3 Qx = Rot3::Rx(-x);
Matrix B = A * Qx.matrix();
double y = -atan2(B(2, 0), B(2, 2));
Rot3 Qy = Rot3::Ry(-y);
Matrix C = B * Qy.matrix();
double z = -atan2(-C(1, 0), C(1, 1));
Rot3 Qz = Rot3::Rz(-z);
Matrix R = C * Qz.matrix();
Vector xyz = Vector_(3, x, y, z);
return make_pair(R, xyz);
}
/* ************************************************************************* */
} // namespace gtsam