gtsam/gtsam/geometry/Line3.cpp

121 lines
3.3 KiB
C++

#include <gtsam/geometry/Line3.h>
namespace gtsam {
Line3 Line3::retract(const Vector4 &v, OptionalJacobian<4, 4> Dp, OptionalJacobian<4, 4> Dv) const {
Vector3 w;
w << v[0], v[1], 0;
Rot3 incR;
if (Dp) {
Dp->setIdentity();
incR = Rot3::Expmap(w);
Dp->block<2, 2>(0, 0) = ((incR.matrix()).transpose()).block<2, 2>(0, 0);
}
if (Dv) {
Matrix3 Dw;
incR = Rot3::Expmap(w, Dw);
Dv->setIdentity();
Dv->block<2, 2>(0, 0) = Dw.block<2, 2>(0, 0);
} else {
incR = Rot3::Expmap(w);
}
Rot3 Rt = R_ * incR;
return Line3(Rt, a_ + v[2], b_ + v[3]);
}
Vector4 Line3::localCoordinates(const Line3 &q, OptionalJacobian<4, 4> Dp,
OptionalJacobian<4, 4> Dq) const {
Vector3 omega;
Matrix3 D_log;
omega = Rot3::Logmap(R_.inverse() * q.R_, D_log);
if (Dp) {
Matrix3 D_log_wp = -((q.R_).matrix()).transpose() * R_.matrix();
Matrix3 Dwp = D_log * D_log_wp;
Dp->setIdentity();
Dp->block<2, 2>(0, 0) = Dwp.block<2, 2>(0, 0);
(*Dp)(2, 2) = -1;
(*Dp)(3, 3) = -1;
}
if (Dq) {
Dq->setIdentity();
Dq->block<2, 2>(0, 0) = D_log.block<2, 2>(0, 0);
}
Vector4 local;
local << omega[0], omega[1], q.a_ - a_, q.b_ - b_;
return local;
}
void Line3::print(const std::string &s) const {
std::cout << s << std::endl;
R_.print("R:\n");
std::cout << "a: " << a_ << ", b: " << b_ << std::endl;
}
bool Line3::equals(const Line3 &l2, double tol) const {
Vector4 diff = localCoordinates(l2);
return fabs(diff[0]) < tol && fabs(diff[1]) < tol
&& fabs(diff[2]) < tol && fabs(diff[3]) < tol;
}
Unit3 Line3::project(OptionalJacobian<2, 4> Dline) const {
Vector3 V_0;
V_0 << -b_, a_, 0.0;
Unit3 l;
if (Dline) {
// Jacobian of the normalized Unit3 projected line with respect to
// un-normalized Vector3 projected line in homogeneous coordinates.
Matrix23 D_unit_line;
l = Unit3::FromPoint3(Point3(R_ * V_0), D_unit_line);
// Jacobian of the un-normalized Vector3 line with respect to
// input 3D line
Matrix34 D_vec_line = Matrix34::Zero();
D_vec_line.col(0) = a_ * R_.r3();
D_vec_line.col(1) = b_ * R_.r3();
D_vec_line.col(2) = R_.r2();
D_vec_line.col(3) = -R_.r1();
// Jacobian of output wrt input is the product of the two.
*Dline = D_unit_line * D_vec_line;
} else {
l = Unit3::FromPoint3(Point3(R_ * V_0));
}
return l;
}
Point3 Line3::point(double distance) const {
// defining "center" of the line to be the point where it
// intersects rotated XY axis
Point3 center(a_, b_, 0);
Point3 rotated_center = R_ * center;
return rotated_center + distance * R_.r3();
}
Line3 transformTo(const Pose3 &wTc, const Line3 &wL,
OptionalJacobian<4, 6> Dpose, OptionalJacobian<4, 4> Dline) {
Rot3 wRc = wTc.rotation();
Rot3 cRw = wRc.inverse();
Rot3 cRl = cRw * wL.R_;
Vector2 w_ab;
Vector3 t = ((wL.R_).transpose() * wTc.translation());
Vector2 c_ab(wL.a_ - t[0], wL.b_ - t[1]);
if (Dpose) {
Matrix3 lRc = (cRl.matrix()).transpose();
Dpose->setZero();
// rotation
Dpose->block<2, 3>(0, 0) = -lRc.block<2, 3>(0, 0);
// translation
Dpose->block<2, 3>(2, 3) = -lRc.block<2, 3>(0, 0);
}
if (Dline) {
Dline->setIdentity();
(*Dline)(0, 3) = -t[2];
(*Dline)(1, 2) = t[2];
}
return Line3(cRl, c_ab[0], c_ab[1]);
}
} // namespace gtsam