385 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			385 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file IMUKittiExampleGPS
 | |
|  * @brief Example of application of ISAM2 for GPS-aided navigation on the KITTI
 | |
|  * VISION BENCHMARK SUITE
 | |
|  * @author Ported by Thomas Jespersen (thomasj@tkjelectronics.dk), TKJ
 | |
|  * Electronics
 | |
|  */
 | |
| 
 | |
| // GTSAM related includes.
 | |
| #include <gtsam/inference/Symbol.h>
 | |
| #include <gtsam/navigation/CombinedImuFactor.h>
 | |
| #include <gtsam/navigation/GPSFactor.h>
 | |
| #include <gtsam/navigation/ImuFactor.h>
 | |
| #include <gtsam/nonlinear/ISAM2.h>
 | |
| #include <gtsam/nonlinear/ISAM2Params.h>
 | |
| #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | |
| #include <gtsam/slam/BetweenFactor.h>
 | |
| #include <gtsam/slam/PriorFactor.h>
 | |
| #include <gtsam/slam/dataset.h>
 | |
| 
 | |
| #include <cstring>
 | |
| #include <fstream>
 | |
| #include <iostream>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| using symbol_shorthand::B;  // Bias  (ax,ay,az,gx,gy,gz)
 | |
| using symbol_shorthand::V;  // Vel   (xdot,ydot,zdot)
 | |
| using symbol_shorthand::X;  // Pose3 (x,y,z,r,p,y)
 | |
| 
 | |
| struct KittiCalibration {
 | |
|   double body_ptx;
 | |
|   double body_pty;
 | |
|   double body_ptz;
 | |
|   double body_prx;
 | |
|   double body_pry;
 | |
|   double body_prz;
 | |
|   double accelerometer_sigma;
 | |
|   double gyroscope_sigma;
 | |
|   double integration_sigma;
 | |
|   double accelerometer_bias_sigma;
 | |
|   double gyroscope_bias_sigma;
 | |
|   double average_delta_t;
 | |
| };
 | |
| 
 | |
| struct ImuMeasurement {
 | |
|   double time;
 | |
|   double dt;
 | |
|   Vector3 accelerometer;
 | |
|   Vector3 gyroscope;  // omega
 | |
| };
 | |
| 
 | |
| struct GpsMeasurement {
 | |
|   double time;
 | |
|   Vector3 position;  // x,y,z
 | |
| };
 | |
| 
 | |
| const string output_filename = "IMUKittiExampleGPSResults.csv";
 | |
| 
 | |
| void loadKittiData(KittiCalibration& kitti_calibration,
 | |
|                    vector<ImuMeasurement>& imu_measurements,
 | |
|                    vector<GpsMeasurement>& gps_measurements) {
 | |
|   string line;
 | |
| 
 | |
|   // Read IMU metadata and compute relative sensor pose transforms
 | |
|   // BodyPtx BodyPty BodyPtz BodyPrx BodyPry BodyPrz AccelerometerSigma
 | |
|   // GyroscopeSigma IntegrationSigma AccelerometerBiasSigma GyroscopeBiasSigma
 | |
|   // AverageDeltaT
 | |
|   string imu_metadata_file =
 | |
|       findExampleDataFile("KittiEquivBiasedImu_metadata.txt");
 | |
|   ifstream imu_metadata(imu_metadata_file.c_str());
 | |
| 
 | |
|   printf("-- Reading sensor metadata\n");
 | |
| 
 | |
|   getline(imu_metadata, line, '\n');  // ignore the first line
 | |
| 
 | |
|   // Load Kitti calibration
 | |
|   getline(imu_metadata, line, '\n');
 | |
|   sscanf(line.c_str(), "%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf",
 | |
|          &kitti_calibration.body_ptx, &kitti_calibration.body_pty,
 | |
|          &kitti_calibration.body_ptz, &kitti_calibration.body_prx,
 | |
|          &kitti_calibration.body_pry, &kitti_calibration.body_prz,
 | |
|          &kitti_calibration.accelerometer_sigma,
 | |
|          &kitti_calibration.gyroscope_sigma,
 | |
|          &kitti_calibration.integration_sigma,
 | |
|          &kitti_calibration.accelerometer_bias_sigma,
 | |
|          &kitti_calibration.gyroscope_bias_sigma,
 | |
|          &kitti_calibration.average_delta_t);
 | |
|   printf("IMU metadata: %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf\n",
 | |
|          kitti_calibration.body_ptx, kitti_calibration.body_pty,
 | |
|          kitti_calibration.body_ptz, kitti_calibration.body_prx,
 | |
|          kitti_calibration.body_pry, kitti_calibration.body_prz,
 | |
|          kitti_calibration.accelerometer_sigma,
 | |
|          kitti_calibration.gyroscope_sigma, kitti_calibration.integration_sigma,
 | |
|          kitti_calibration.accelerometer_bias_sigma,
 | |
|          kitti_calibration.gyroscope_bias_sigma,
 | |
|          kitti_calibration.average_delta_t);
 | |
| 
 | |
|   // Read IMU data
 | |
|   // Time dt accelX accelY accelZ omegaX omegaY omegaZ
 | |
|   string imu_data_file = findExampleDataFile("KittiEquivBiasedImu.txt");
 | |
|   printf("-- Reading IMU measurements from file\n");
 | |
|   {
 | |
|     ifstream imu_data(imu_data_file.c_str());
 | |
|     getline(imu_data, line, '\n');  // ignore the first line
 | |
| 
 | |
|     double time = 0, dt = 0, acc_x = 0, acc_y = 0, acc_z = 0, gyro_x = 0,
 | |
|            gyro_y = 0, gyro_z = 0;
 | |
|     while (!imu_data.eof()) {
 | |
|       getline(imu_data, line, '\n');
 | |
|       sscanf(line.c_str(), "%lf %lf %lf %lf %lf %lf %lf %lf", &time, &dt,
 | |
|              &acc_x, &acc_y, &acc_z, &gyro_x, &gyro_y, &gyro_z);
 | |
| 
 | |
|       ImuMeasurement measurement;
 | |
|       measurement.time = time;
 | |
|       measurement.dt = dt;
 | |
|       measurement.accelerometer = Vector3(acc_x, acc_y, acc_z);
 | |
|       measurement.gyroscope = Vector3(gyro_x, gyro_y, gyro_z);
 | |
|       imu_measurements.push_back(measurement);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Read GPS data
 | |
|   // Time,X,Y,Z
 | |
|   string gps_data_file = findExampleDataFile("KittiGps_converted.txt");
 | |
|   printf("-- Reading GPS measurements from file\n");
 | |
|   {
 | |
|     ifstream gps_data(gps_data_file.c_str());
 | |
|     getline(gps_data, line, '\n');  // ignore the first line
 | |
| 
 | |
|     double time = 0, gps_x = 0, gps_y = 0, gps_z = 0;
 | |
|     while (!gps_data.eof()) {
 | |
|       getline(gps_data, line, '\n');
 | |
|       sscanf(line.c_str(), "%lf,%lf,%lf,%lf", &time, &gps_x, &gps_y, &gps_z);
 | |
| 
 | |
|       GpsMeasurement measurement;
 | |
|       measurement.time = time;
 | |
|       measurement.position = Vector3(gps_x, gps_y, gps_z);
 | |
|       gps_measurements.push_back(measurement);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| int main(int argc, char* argv[]) {
 | |
|   KittiCalibration kitti_calibration;
 | |
|   vector<ImuMeasurement> imu_measurements;
 | |
|   vector<GpsMeasurement> gps_measurements;
 | |
|   loadKittiData(kitti_calibration, imu_measurements, gps_measurements);
 | |
| 
 | |
|   Vector6 BodyP =
 | |
|       (Vector6() << kitti_calibration.body_ptx, kitti_calibration.body_pty,
 | |
|        kitti_calibration.body_ptz, kitti_calibration.body_prx,
 | |
|        kitti_calibration.body_pry, kitti_calibration.body_prz)
 | |
|           .finished();
 | |
|   auto body_T_imu = Pose3::Expmap(BodyP);
 | |
|   if (!body_T_imu.equals(Pose3(), 1e-5)) {
 | |
|     printf(
 | |
|         "Currently only support IMUinBody is identity, i.e. IMU and body frame "
 | |
|         "are the same");
 | |
|     exit(-1);
 | |
|   }
 | |
| 
 | |
|   // Configure different variables
 | |
|   // double t_offset = gps_measurements[0].time;
 | |
|   size_t first_gps_pose = 1;
 | |
|   size_t gps_skip = 10;  // Skip this many GPS measurements each time
 | |
|   double g = 9.8;
 | |
|   auto w_coriolis = Vector3::Zero();  // zero vector
 | |
| 
 | |
|   // Configure noise models
 | |
|   auto noise_model_gps = noiseModel::Diagonal::Precisions(
 | |
|       (Vector6() << Vector3::Constant(0), Vector3::Constant(1.0 / 0.07))
 | |
|           .finished());
 | |
| 
 | |
|   // Set initial conditions for the estimated trajectory
 | |
|   // initial pose is the reference frame (navigation frame)
 | |
|   auto current_pose_global =
 | |
|       Pose3(Rot3(), gps_measurements[first_gps_pose].position);
 | |
|   // the vehicle is stationary at the beginning at position 0,0,0
 | |
|   Vector3 current_velocity_global = Vector3::Zero();
 | |
|   auto current_bias = imuBias::ConstantBias();  // init with zero bias
 | |
| 
 | |
|   auto sigma_init_x = noiseModel::Diagonal::Precisions(
 | |
|       (Vector6() << Vector3::Constant(0), Vector3::Constant(1.0)).finished());
 | |
|   auto sigma_init_v = noiseModel::Diagonal::Sigmas(Vector3::Constant(1000.0));
 | |
|   auto sigma_init_b = noiseModel::Diagonal::Sigmas(
 | |
|       (Vector6() << Vector3::Constant(0.100), Vector3::Constant(5.00e-05))
 | |
|           .finished());
 | |
| 
 | |
|   // Set IMU preintegration parameters
 | |
|   Matrix33 measured_acc_cov =
 | |
|       I_3x3 * pow(kitti_calibration.accelerometer_sigma, 2);
 | |
|   Matrix33 measured_omega_cov =
 | |
|       I_3x3 * pow(kitti_calibration.gyroscope_sigma, 2);
 | |
|   // error committed in integrating position from velocities
 | |
|   Matrix33 integration_error_cov =
 | |
|       I_3x3 * pow(kitti_calibration.integration_sigma, 2);
 | |
| 
 | |
|   auto imu_params = PreintegratedImuMeasurements::Params::MakeSharedU(g);
 | |
|   imu_params->accelerometerCovariance =
 | |
|       measured_acc_cov;  // acc white noise in continuous
 | |
|   imu_params->integrationCovariance =
 | |
|       integration_error_cov;  // integration uncertainty continuous
 | |
|   imu_params->gyroscopeCovariance =
 | |
|       measured_omega_cov;  // gyro white noise in continuous
 | |
|   imu_params->omegaCoriolis = w_coriolis;
 | |
| 
 | |
|   std::shared_ptr<PreintegratedImuMeasurements> current_summarized_measurement =
 | |
|       nullptr;
 | |
| 
 | |
|   // Set ISAM2 parameters and create ISAM2 solver object
 | |
|   ISAM2Params isam_params;
 | |
|   isam_params.factorization = ISAM2Params::CHOLESKY;
 | |
|   isam_params.relinearizeSkip = 10;
 | |
| 
 | |
|   ISAM2 isam(isam_params);
 | |
| 
 | |
|   // Create the factor graph and values object that will store new factors and
 | |
|   // values to add to the incremental graph
 | |
|   NonlinearFactorGraph new_factors;
 | |
|   Values new_values;  // values storing the initial estimates of new nodes in
 | |
|                       // the factor graph
 | |
| 
 | |
|   /// Main loop:
 | |
|   /// (1) we read the measurements
 | |
|   /// (2) we create the corresponding factors in the graph
 | |
|   /// (3) we solve the graph to obtain and optimal estimate of robot trajectory
 | |
|   printf(
 | |
|       "-- Starting main loop: inference is performed at each time step, but we "
 | |
|       "plot trajectory every 10 steps\n");
 | |
|   size_t j = 0;
 | |
|   size_t included_imu_measurement_count = 0;
 | |
| 
 | |
|   for (size_t i = first_gps_pose; i < gps_measurements.size() - 1; i++) {
 | |
|     // At each non=IMU measurement we initialize a new node in the graph
 | |
|     auto current_pose_key = X(i);
 | |
|     auto current_vel_key = V(i);
 | |
|     auto current_bias_key = B(i);
 | |
|     double t = gps_measurements[i].time;
 | |
| 
 | |
|     if (i == first_gps_pose) {
 | |
|       // Create initial estimate and prior on initial pose, velocity, and biases
 | |
|       new_values.insert(current_pose_key, current_pose_global);
 | |
|       new_values.insert(current_vel_key, current_velocity_global);
 | |
|       new_values.insert(current_bias_key, current_bias);
 | |
|       new_factors.emplace_shared<PriorFactor<Pose3>>(
 | |
|           current_pose_key, current_pose_global, sigma_init_x);
 | |
|       new_factors.emplace_shared<PriorFactor<Vector3>>(
 | |
|           current_vel_key, current_velocity_global, sigma_init_v);
 | |
|       new_factors.emplace_shared<PriorFactor<imuBias::ConstantBias>>(
 | |
|           current_bias_key, current_bias, sigma_init_b);
 | |
|     } else {
 | |
|       double t_previous = gps_measurements[i - 1].time;
 | |
| 
 | |
|       // Summarize IMU data between the previous GPS measurement and now
 | |
|       current_summarized_measurement =
 | |
|           std::make_shared<PreintegratedImuMeasurements>(imu_params,
 | |
|                                                          current_bias);
 | |
| 
 | |
|       while (j < imu_measurements.size() && imu_measurements[j].time <= t) {
 | |
|         if (imu_measurements[j].time >= t_previous) {
 | |
|           current_summarized_measurement->integrateMeasurement(
 | |
|               imu_measurements[j].accelerometer, imu_measurements[j].gyroscope,
 | |
|               imu_measurements[j].dt);
 | |
|           included_imu_measurement_count++;
 | |
|         }
 | |
|         j++;
 | |
|       }
 | |
| 
 | |
|       // Create IMU factor
 | |
|       auto previous_pose_key = X(i - 1);
 | |
|       auto previous_vel_key = V(i - 1);
 | |
|       auto previous_bias_key = B(i - 1);
 | |
| 
 | |
|       new_factors.emplace_shared<ImuFactor>(
 | |
|           previous_pose_key, previous_vel_key, current_pose_key,
 | |
|           current_vel_key, previous_bias_key, *current_summarized_measurement);
 | |
| 
 | |
|       // Bias evolution as given in the IMU metadata
 | |
|       auto sigma_between_b = noiseModel::Diagonal::Sigmas(
 | |
|           (Vector6() << Vector3::Constant(
 | |
|                sqrt(included_imu_measurement_count) *
 | |
|                kitti_calibration.accelerometer_bias_sigma),
 | |
|            Vector3::Constant(sqrt(included_imu_measurement_count) *
 | |
|                              kitti_calibration.gyroscope_bias_sigma))
 | |
|               .finished());
 | |
|       new_factors.emplace_shared<BetweenFactor<imuBias::ConstantBias>>(
 | |
|           previous_bias_key, current_bias_key, imuBias::ConstantBias(),
 | |
|           sigma_between_b);
 | |
| 
 | |
|       // Create GPS factor
 | |
|       auto gps_pose =
 | |
|           Pose3(current_pose_global.rotation(), gps_measurements[i].position);
 | |
|       if ((i % gps_skip) == 0) {
 | |
|         new_factors.emplace_shared<PriorFactor<Pose3>>(
 | |
|             current_pose_key, gps_pose, noise_model_gps);
 | |
|         new_values.insert(current_pose_key, gps_pose);
 | |
| 
 | |
|         printf("############ POSE INCLUDED AT TIME %.6lf ############\n",
 | |
|                t);
 | |
|         cout << gps_pose.translation();
 | |
|         printf("\n\n");
 | |
|       } else {
 | |
|         new_values.insert(current_pose_key, current_pose_global);
 | |
|       }
 | |
| 
 | |
|       // Add initial values for velocity and bias based on the previous
 | |
|       // estimates
 | |
|       new_values.insert(current_vel_key, current_velocity_global);
 | |
|       new_values.insert(current_bias_key, current_bias);
 | |
| 
 | |
|       // Update solver
 | |
|       // =======================================================================
 | |
|       // We accumulate 2*GPSskip GPS measurements before updating the solver at
 | |
|       // first so that the heading becomes observable.
 | |
|       if (i > (first_gps_pose + 2 * gps_skip)) {
 | |
|         printf("############ NEW FACTORS AT TIME %.6lf ############\n",
 | |
|                t);
 | |
|         new_factors.print();
 | |
| 
 | |
|         isam.update(new_factors, new_values);
 | |
| 
 | |
|         // Reset the newFactors and newValues list
 | |
|         new_factors.resize(0);
 | |
|         new_values.clear();
 | |
| 
 | |
|         // Extract the result/current estimates
 | |
|         Values result = isam.calculateEstimate();
 | |
| 
 | |
|         current_pose_global = result.at<Pose3>(current_pose_key);
 | |
|         current_velocity_global = result.at<Vector3>(current_vel_key);
 | |
|         current_bias = result.at<imuBias::ConstantBias>(current_bias_key);
 | |
| 
 | |
|         printf("\n############ POSE AT TIME %lf ############\n", t);
 | |
|         current_pose_global.print();
 | |
|         printf("\n\n");
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Save results to file
 | |
|   printf("\nWriting results to file...\n");
 | |
|   FILE* fp_out = fopen(output_filename.c_str(), "w+");
 | |
|   fprintf(fp_out,
 | |
|           "#time(s),x(m),y(m),z(m),qx,qy,qz,qw,gt_x(m),gt_y(m),gt_z(m)\n");
 | |
| 
 | |
|   Values result = isam.calculateEstimate();
 | |
|   for (size_t i = first_gps_pose; i < gps_measurements.size() - 1; i++) {
 | |
|     auto pose_key = X(i);
 | |
|     auto vel_key = V(i);
 | |
|     auto bias_key = B(i);
 | |
| 
 | |
|     auto pose = result.at<Pose3>(pose_key);
 | |
|     auto velocity = result.at<Vector3>(vel_key);
 | |
|     auto bias = result.at<imuBias::ConstantBias>(bias_key);
 | |
| 
 | |
|     auto pose_quat = pose.rotation().toQuaternion();
 | |
|     auto gps = gps_measurements[i].position;
 | |
| 
 | |
|     cout << "State at #" << i << endl;
 | |
|     cout << "Pose:" << endl << pose << endl;
 | |
|     cout << "Velocity:" << endl << velocity << endl;
 | |
|     cout << "Bias:" << endl << bias << endl;
 | |
| 
 | |
|     fprintf(fp_out, "%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f\n",
 | |
|             gps_measurements[i].time, pose.x(), pose.y(), pose.z(),
 | |
|             pose_quat.x(), pose_quat.y(), pose_quat.z(), pose_quat.w(), gps(0),
 | |
|             gps(1), gps(2));
 | |
|   }
 | |
| 
 | |
|   fclose(fp_out);
 | |
| }
 |