242 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			242 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file testQPSolver.cpp
 | |
|  * @brief Test simple QP solver for a linear inequality constraint
 | |
|  * @date Apr 10, 2014
 | |
|  * @author Duy-Nguyen Ta
 | |
|  */
 | |
| 
 | |
| #include <gtsam_unstable/linear/LPInitSolver.h>
 | |
| #include <gtsam_unstable/linear/LPSolver.h>
 | |
| 
 | |
| #include <gtsam/base/Testable.h>
 | |
| #include <gtsam/inference/FactorGraph-inst.h>
 | |
| #include <gtsam/inference/Symbol.h>
 | |
| #include <gtsam/linear/GaussianFactorGraph.h>
 | |
| #include <gtsam/linear/VectorValues.h>
 | |
| #include <gtsam_unstable/linear/EqualityFactorGraph.h>
 | |
| #include <gtsam_unstable/linear/InequalityFactorGraph.h>
 | |
| #include <gtsam_unstable/linear/InfeasibleInitialValues.h>
 | |
| 
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| 
 | |
| #include <boost/foreach.hpp>
 | |
| #include <boost/range/adaptor/map.hpp>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| using namespace gtsam::symbol_shorthand;
 | |
| 
 | |
| static const Vector kOne = Vector::Ones(1), kZero = Vector::Zero(1);
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| /**
 | |
|  * min -x1-x2
 | |
|  * s.t.   x1 + 2x2 <= 4
 | |
|  *       4x1 + 2x2 <= 12
 | |
|  *       -x1 +  x2 <= 1
 | |
|  *       x1, x2 >= 0
 | |
|  */
 | |
| LP simpleLP1() {
 | |
|   LP lp;
 | |
|   lp.cost = LinearCost(1, Vector2(-1., -1.));   // min -x1-x2 (max x1+x2)
 | |
|   lp.inequalities.add(1, Vector2(-1, 0), 0, 1); // x1 >= 0
 | |
|   lp.inequalities.add(1, Vector2(0, -1), 0, 2); //  x2 >= 0
 | |
|   lp.inequalities.add(1, Vector2(1, 2), 4, 3);  //  x1 + 2*x2 <= 4
 | |
|   lp.inequalities.add(1, Vector2(4, 2), 12, 4); //  4x1 + 2x2 <= 12
 | |
|   lp.inequalities.add(1, Vector2(-1, 1), 1, 5); //  -x1 + x2 <= 1
 | |
|   return lp;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| namespace gtsam {
 | |
| 
 | |
| TEST(LPInitSolver, InfiniteLoopSingleVar) {
 | |
|   LP lp;
 | |
|   lp.cost = LinearCost(1, Vector3(0, 0, 1));          // min alpha
 | |
|   lp.inequalities.add(1, Vector3(-2, -1, -1), -2, 1); //-2x-y-a <= -2
 | |
|   lp.inequalities.add(1, Vector3(-1, 2, -1), 6, 2);   // -x+2y-a <= 6
 | |
|   lp.inequalities.add(1, Vector3(-1, 0, -1), 0, 3);   // -x - a <= 0
 | |
|   lp.inequalities.add(1, Vector3(1, 0, -1), 20, 4);   // x - a <= 20
 | |
|   lp.inequalities.add(1, Vector3(0, -1, -1), 0, 5);   // -y - a <= 0
 | |
|   LPSolver solver(lp);
 | |
|   VectorValues starter;
 | |
|   starter.insert(1, Vector3(0, 0, 2));
 | |
|   VectorValues results, duals;
 | |
|   boost::tie(results, duals) = solver.optimize(starter);
 | |
|   VectorValues expected;
 | |
|   expected.insert(1, Vector3(13.5, 6.5, -6.5));
 | |
|   CHECK(assert_equal(results, expected, 1e-7));
 | |
| }
 | |
| 
 | |
| TEST(LPInitSolver, InfiniteLoopMultiVar) {
 | |
|   LP lp;
 | |
|   Key X = symbol('X', 1);
 | |
|   Key Y = symbol('Y', 1);
 | |
|   Key Z = symbol('Z', 1);
 | |
|   lp.cost = LinearCost(Z, kOne); // min alpha
 | |
|   lp.inequalities.add(X, -2.0 * kOne, Y, -1.0 * kOne, Z, -1.0 * kOne, -2,
 | |
|                       1); //-2x-y-alpha <= -2
 | |
|   lp.inequalities.add(X, -1.0 * kOne, Y, 2.0 * kOne, Z, -1.0 * kOne, 6,
 | |
|                       2); // -x+2y-alpha <= 6
 | |
|   lp.inequalities.add(X, -1.0 * kOne, Z, -1.0 * kOne, 0,
 | |
|                       3); // -x - alpha <= 0
 | |
|   lp.inequalities.add(X, 1.0 * kOne, Z, -1.0 * kOne, 20,
 | |
|                       4); // x - alpha <= 20
 | |
|   lp.inequalities.add(Y, -1.0 * kOne, Z, -1.0 * kOne, 0,
 | |
|                       5); // -y - alpha <= 0
 | |
|   LPSolver solver(lp);
 | |
|   VectorValues starter;
 | |
|   starter.insert(X, kZero);
 | |
|   starter.insert(Y, kZero);
 | |
|   starter.insert(Z, Vector::Constant(1, 2.0));
 | |
|   VectorValues results, duals;
 | |
|   boost::tie(results, duals) = solver.optimize(starter);
 | |
|   VectorValues expected;
 | |
|   expected.insert(X, Vector::Constant(1, 13.5));
 | |
|   expected.insert(Y, Vector::Constant(1, 6.5));
 | |
|   expected.insert(Z, Vector::Constant(1, -6.5));
 | |
|   CHECK(assert_equal(results, expected, 1e-7));
 | |
| }
 | |
| 
 | |
| TEST(LPInitSolver, Initialization) {
 | |
|   LP lp = simpleLP1();
 | |
|   LPInitSolver initSolver(lp);
 | |
| 
 | |
|   GaussianFactorGraph::shared_ptr initOfInitGraph =
 | |
|       initSolver.buildInitOfInitGraph();
 | |
|   VectorValues x0 = initOfInitGraph->optimize();
 | |
|   VectorValues expected_x0;
 | |
|   expected_x0.insert(1, Vector::Zero(2));
 | |
|   CHECK(assert_equal(expected_x0, x0, 1e-10));
 | |
| 
 | |
|   double y0 = initSolver.compute_y0(x0);
 | |
|   double expected_y0 = 0.0;
 | |
|   DOUBLES_EQUAL(expected_y0, y0, 1e-7);
 | |
| 
 | |
|   Key yKey = 2;
 | |
|   LP::shared_ptr initLP = initSolver.buildInitialLP(yKey);
 | |
|   LP expectedInitLP;
 | |
|   expectedInitLP.cost = LinearCost(yKey, kOne);
 | |
|   expectedInitLP.inequalities.add(1, Vector2(-1, 0), 2, Vector::Constant(1, -1),
 | |
|                                   0, 1); // -x1 - y <= 0
 | |
|   expectedInitLP.inequalities.add(1, Vector2(0, -1), 2, Vector::Constant(1, -1),
 | |
|                                   0, 2); // -x2 - y <= 0
 | |
|   expectedInitLP.inequalities.add(1, Vector2(1, 2), 2, Vector::Constant(1, -1),
 | |
|                                   4,
 | |
|                                   3); //  x1 + 2*x2 - y <= 4
 | |
|   expectedInitLP.inequalities.add(1, Vector2(4, 2), 2, Vector::Constant(1, -1),
 | |
|                                   12,
 | |
|                                   4); //  4x1 + 2x2 - y <= 12
 | |
|   expectedInitLP.inequalities.add(1, Vector2(-1, 1), 2, Vector::Constant(1, -1),
 | |
|                                   1,
 | |
|                                   5); //  -x1 + x2 - y <= 1
 | |
|   CHECK(assert_equal(expectedInitLP, *initLP, 1e-10));
 | |
|   LPSolver lpSolveInit(*initLP);
 | |
|   VectorValues xy0(x0);
 | |
|   xy0.insert(yKey, Vector::Constant(1, y0));
 | |
|   VectorValues xyInit = lpSolveInit.optimize(xy0).first;
 | |
|   VectorValues expected_init;
 | |
|   expected_init.insert(1, Vector::Ones(2));
 | |
|   expected_init.insert(2, Vector::Constant(1, -1));
 | |
|   CHECK(assert_equal(expected_init, xyInit, 1e-10));
 | |
| 
 | |
|   VectorValues x = initSolver.solve();
 | |
|   CHECK(lp.isFeasible(x));
 | |
| }
 | |
| } // namespace gtsam
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| /**
 | |
|  * TEST gtsam solver with an over-constrained system
 | |
|  *  x + y = 1
 | |
|  *  x - y = 5
 | |
|  *  x + 2y = 6
 | |
|  */
 | |
| TEST(LPSolver, OverConstrainedLinearSystem) {
 | |
|   GaussianFactorGraph graph;
 | |
|   Matrix A1 = Vector3(1, 1, 1);
 | |
|   Matrix A2 = Vector3(1, -1, 2);
 | |
|   Vector b = Vector3(1, 5, 6);
 | |
|   graph.add(1, A1, 2, A2, b, noiseModel::Constrained::All(3));
 | |
| 
 | |
|   VectorValues x = graph.optimize();
 | |
|   // This check confirms that gtsam linear constraint solver can't handle
 | |
|   // over-constrained system
 | |
|   CHECK(graph[0]->error(x) != 0.0);
 | |
| }
 | |
| 
 | |
| TEST(LPSolver, overConstrainedLinearSystem2) {
 | |
|   GaussianFactorGraph graph;
 | |
|   graph.add(1, I_1x1, 2, I_1x1, kOne, noiseModel::Constrained::All(1));
 | |
|   graph.add(1, I_1x1, 2, -I_1x1, 5 * kOne, noiseModel::Constrained::All(1));
 | |
|   graph.add(1, I_1x1, 2, 2 * I_1x1, 6 * kOne, noiseModel::Constrained::All(1));
 | |
|   VectorValues x = graph.optimize();
 | |
|   // This check confirms that gtsam linear constraint solver can't handle
 | |
|   // over-constrained system
 | |
|   CHECK(graph.error(x) != 0.0);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(LPSolver, SimpleTest1) {
 | |
|   LP lp = simpleLP1();
 | |
|   LPSolver lpSolver(lp);
 | |
|   VectorValues init;
 | |
|   init.insert(1, Vector::Zero(2));
 | |
| 
 | |
|   VectorValues x1 =
 | |
|       lpSolver.buildWorkingGraph(InequalityFactorGraph(), init).optimize();
 | |
|   VectorValues expected_x1;
 | |
|   expected_x1.insert(1, Vector::Ones(2));
 | |
|   CHECK(assert_equal(expected_x1, x1, 1e-10));
 | |
| 
 | |
|   VectorValues result, duals;
 | |
|   boost::tie(result, duals) = lpSolver.optimize(init);
 | |
|   VectorValues expectedResult;
 | |
|   expectedResult.insert(1, Vector2(8. / 3., 2. / 3.));
 | |
|   CHECK(assert_equal(expectedResult, result, 1e-10));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(LPSolver, TestWithoutInitialValues) {
 | |
|   LP lp = simpleLP1();
 | |
|   LPSolver lpSolver(lp);
 | |
|   VectorValues result, duals, expectedResult;
 | |
|   expectedResult.insert(1, Vector2(8. / 3., 2. / 3.));
 | |
|   boost::tie(result, duals) = lpSolver.optimize();
 | |
|   CHECK(assert_equal(expectedResult, result));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * TODO: More TEST cases:
 | |
|  * - Infeasible
 | |
|  * - Unbounded
 | |
|  * - Underdetermined
 | |
|  */
 | |
| /* ************************************************************************* */
 | |
| TEST(LPSolver, LinearCost) {
 | |
|   LinearCost cost(1, Vector3(2., 4., 6.));
 | |
|   VectorValues x;
 | |
|   x.insert(1, Vector3(1., 3., 5.));
 | |
|   double error = cost.error(x);
 | |
|   double expectedError = 44.0;
 | |
|   DOUBLES_EQUAL(expectedError, error, 1e-100);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() {
 | |
|   TestResult tr;
 | |
|   return TestRegistry::runAllTests(tr);
 | |
| }
 | |
| /* ************************************************************************* */
 |