gtsam/gtsam_unstable/slam/SmartProjectionPoseFactor.h

188 lines
6.1 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file SmartProjectionPoseFactor.h
* @brief Produces an Hessian factors on POSES from monocular measurements of a single landmark
* @author Luca Carlone
* @author Chris Beall
* @author Zsolt Kira
*/
#pragma once
#include "SmartProjectionFactor.h"
namespace gtsam {
/**
*
* @addtogroup SLAM
*
* If you are using the factor, please cite:
* L. Carlone, Z. Kira, C. Beall, V. Indelman, F. Dellaert, Eliminating conditionally
* independent sets in factor graphs: a unifying perspective based on smart factors,
* Int. Conf. on Robotics and Automation (ICRA), 2014.
*
*/
/**
* The calibration is known here. The factor only constraints poses (variable dimension is 6)
* @addtogroup SLAM
*/
template<class POSE, class LANDMARK, class CALIBRATION>
class SmartProjectionPoseFactor: public SmartProjectionFactor<POSE, LANDMARK, CALIBRATION, 6> {
protected:
// Known calibration
std::vector<boost::shared_ptr<CALIBRATION> > K_all_; ///< shared pointer to calibration object (one for each camera)
public:
/// shorthand for base class type
typedef SmartProjectionFactor<POSE, LANDMARK, CALIBRATION, 6> Base;
/// shorthand for this class
typedef SmartProjectionPoseFactor<POSE, LANDMARK, CALIBRATION> This;
/// shorthand for a smart pointer to a factor
typedef boost::shared_ptr<This> shared_ptr;
/**
* Constructor
* @param rankTol tolerance used to check if point triangulation is degenerate
* @param linThreshold threshold on relative pose changes used to decide whether to relinearize (selective relinearization)
* @param manageDegeneracy is true, in presence of degenerate triangulation, the factor is converted to a rotation-only constraint,
* otherwise the factor is simply neglected
* @param enableEPI if set to true linear triangulation is refined with embedded LM iterations
* @param body_P_sensor is the transform from body to sensor frame (default identity)
*/
SmartProjectionPoseFactor(const double rankTol = 1,
const double linThreshold = -1, const bool manageDegeneracy = false,
const bool enableEPI = false, boost::optional<POSE> body_P_sensor = boost::none) :
Base(rankTol, linThreshold, manageDegeneracy, enableEPI, body_P_sensor) {}
/** Virtual destructor */
virtual ~SmartProjectionPoseFactor() {}
/**
* add a new measurement and pose key
* @param measured is the 2m dimensional location of the projection of a single landmark in the m view (the measurement)
* @param poseKey is the index corresponding to the camera observing the same landmark
* @param noise_i is the measurement noise
* @param K_i is the (known) camera calibration
*/
void add(const Point2 measured_i, const Key poseKey_i,
const SharedNoiseModel noise_i,
const boost::shared_ptr<CALIBRATION> K_i) {
Base::add(measured_i, poseKey_i, noise_i);
K_all_.push_back(K_i);
}
/**
* add a new measurements and pose keys
* Variant of the previous one in which we include a set of measurements
*/
void add(std::vector<Point2> measurements, std::vector<Key> poseKeys,
std::vector<SharedNoiseModel> noises,
std::vector<boost::shared_ptr<CALIBRATION> > Ks) {
Base::add(measurements, poseKeys, noises);
for (size_t i = 0; i < measurements.size(); i++) {
K_all_.push_back(Ks.at(i));
}
}
/**
* add a new measurements and pose keys
* Variant of the previous one in which we include a set of measurements with the same noise and calibration
*/
void add(std::vector<Point2> measurements, std::vector<Key> poseKeys,
const SharedNoiseModel noise, const boost::shared_ptr<CALIBRATION> K) {
for (size_t i = 0; i < measurements.size(); i++) {
Base::add(measurements.at(i), poseKeys.at(i), noise);
K_all_.push_back(K);
}
}
/**
* print
* @param s optional string naming the factor
* @param keyFormatter optional formatter useful for printing Symbols
*/
void print(const std::string& s = "", const KeyFormatter& keyFormatter =
DefaultKeyFormatter) const {
std::cout << s << "SmartProjectionPoseFactor, z = \n ";
BOOST_FOREACH(const boost::shared_ptr<CALIBRATION>& K, K_all_)
K->print("calibration = ");
Base::print("", keyFormatter);
}
/// equals
virtual bool equals(const NonlinearFactor& p, double tol = 1e-9) const {
const This *e = dynamic_cast<const This*>(&p);
return e && Base::equals(p, tol);
}
/// get the dimension of the factor
virtual size_t dim() const {
return 6 * this->keys_.size();
}
// Collect all cameras
typename Base::Cameras cameras(const Values& values) const {
typename Base::Cameras cameras;
size_t i=0;
BOOST_FOREACH(const Key& k, this->keys_) {
Pose3 pose = values.at<Pose3>(k);
typename Base::Camera camera(pose, *K_all_[i++]);
cameras.push_back(camera);
}
return cameras;
}
/**
* linearize returns a Hessian factor contraining the poses
*/
virtual boost::shared_ptr<GaussianFactor> linearize(
const Values& values) const {
return this->createHessianFactor(cameras(values));
}
/**
* error calculates the error of the factor.
*/
virtual double error(const Values& values) const {
if (this->active(values)) {
return this->totalReprojectionError(cameras(values));
} else { // else of active flag
return 0.0;
}
}
/** return the calibration object */
inline const boost::shared_ptr<CALIBRATION> calibration() const {
return K_all_;
}
private:
/// Serialization function
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int version) {
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
ar & BOOST_SERIALIZATION_NVP(K_all_);
}
}; // end of class declaration
} // \ namespace gtsam