gtsam/inference/ISAM2-inl.h

483 lines
16 KiB
C++

/**
* @file ISAM2-inl.h
* @brief Incremental update functionality (ISAM2) for BayesTree, with fluid relinearization.
* @author Michael Kaess
*/
#include <boost/foreach.hpp>
#include <boost/assign/std/list.hpp> // for operator +=
using namespace boost::assign;
#include <set>
#include <gtsam/nonlinear/NonlinearFactorGraph-inl.h>
#include <gtsam/linear/GaussianFactor.h>
#include <gtsam/linear/VectorConfig.h>
#include <gtsam/inference/Conditional.h>
#include <gtsam/inference/BayesTree-inl.h>
#include <gtsam/inference/ISAM2.h>
#if 0 // timing - note: adds some time when applied in inner loops
#include <sys/time.h>
// simple class for accumulating execution timing information by name
class Timing {
class Stats {
public:
double t0;
double t;
double t_max;
double t_min;
int n;
};
map<string, Stats> stats;
public:
void add_t0(string id, double t0) {
stats[id].t0 = t0;
}
double get_t0(string id) {
return stats[id].t0;
}
void add_dt(string id, double dt) {
Stats& s = stats[id];
s.t += dt;
s.n++;
if (s.n==1 || s.t_max < dt) s.t_max = dt;
if (s.n==1 || s.t_min > dt) s.t_min = dt;
}
void print() {
map<string, Stats>::iterator it;
for(it = stats.begin(); it!=stats.end(); it++) {
Stats& s = it->second;
printf("%s: %g (%i times, min: %g, max: %g)\n",
it->first.c_str(), s.t, s.n, s.t_min, s.t_max);
}
}
double time(string id) {
Stats& s = stats[id];
return s.t;
}
};
Timing timing;
double tic() {
struct timeval t;
gettimeofday(&t, NULL);
return ((double)t.tv_sec + ((double)t.tv_usec)/1000000.);
}
double toc(double t) {
double s = tic();
return (max(0., s-t));
}
double tic(string id) {
double t0 = tic();
timing.add_t0(id, t0);
return t0;
}
double toc(string id) {
double dt = toc(timing.get_t0(id));
timing.add_dt(id, dt);
return dt;
}
void tictoc_print() {
timing.print();
}
#else
void tictoc_print() {}
double tic(string id) {return 0.;}
double toc(string id) {return 0.;}
#endif
namespace gtsam {
using namespace std;
// from inference-inl.h - need to additionally return the newly created factor for caching
boost::shared_ptr<GaussianConditional> _eliminateOne(FactorGraph<GaussianFactor>& graph, CachedFactors& cached, const Symbol& key) {
// combine the factors of all nodes connected to the variable to be eliminated
// if no factors are connected to key, returns an empty factor
tic("eliminate_removeandcombinefactors");
boost::shared_ptr<GaussianFactor> joint_factor = removeAndCombineFactors(graph,key);
toc("eliminate_removeandcombinefactors");
// eliminate that joint factor
boost::shared_ptr<GaussianFactor> factor;
boost::shared_ptr<GaussianConditional> conditional;
tic("eliminate_eliminate");
boost::tie(conditional, factor) = joint_factor->eliminate(key);
toc("eliminate_eliminate");
// ADDED: remember the intermediate result to be able to later restart computation in the middle
cached[key] = factor;
// add new factor on separator back into the graph
if (!factor->empty()) graph.push_back(factor);
// return the conditional Gaussian
return conditional;
}
// from GaussianFactorGraph.cpp, see _eliminateOne above
boost::shared_ptr<GaussianBayesNet> _eliminate(FactorGraph<GaussianFactor>& graph, CachedFactors& cached, const Ordering& ordering) {
boost::shared_ptr<GaussianBayesNet> chordalBayesNet(new GaussianBayesNet()); // empty
BOOST_FOREACH(const Symbol& key, ordering) {
GaussianConditional::shared_ptr cg = _eliminateOne(graph, cached, key);
chordalBayesNet->push_back(cg);
}
return chordalBayesNet;
}
// special const version used in constructor below
boost::shared_ptr<GaussianBayesNet> _eliminate_const(const FactorGraph<GaussianFactor>& graph, CachedFactors& cached, const Ordering& ordering) {
// make a copy that can be modified locally
FactorGraph<GaussianFactor> graph_ignored = graph;
return _eliminate(graph_ignored, cached, ordering);
}
/** Create an empty Bayes Tree */
template<class Conditional, class Config>
ISAM2<Conditional, Config>::ISAM2() : BayesTree<Conditional>() {}
/** Create a Bayes Tree from a nonlinear factor graph */
template<class Conditional, class Config>
ISAM2<Conditional, Config>::ISAM2(const NonlinearFactorGraph<Config>& nlfg, const Ordering& ordering, const Config& config)
: BayesTree<Conditional>(nlfg.linearize(config)->eliminate(ordering)),
theta_(config), delta_(VectorConfig()), nonlinearFactors_(nlfg) {
// todo: repeats calculation above, just to set "cached"
// De-referencing shared pointer can be quite expensive because creates temporary
_eliminate_const(*nlfg.linearize(config), cached_, ordering);
}
/* ************************************************************************* */
template<class Conditional, class Config>
list<size_t> ISAM2<Conditional, Config>::getAffectedFactors(const list<Symbol>& keys) const {
FactorGraph<NonlinearFactor<Config> > allAffected;
list<size_t> indices;
BOOST_FOREACH(const Symbol& key, keys) {
const list<size_t> l = nonlinearFactors_.factors(key);
indices.insert(indices.begin(), l.begin(), l.end());
}
indices.sort();
indices.unique();
return indices;
}
/* ************************************************************************* */
// retrieve all factors that ONLY contain the affected variables
// (note that the remaining stuff is summarized in the cached factors)
template<class Conditional, class Config>
boost::shared_ptr<GaussianFactorGraph> ISAM2<Conditional, Config>::relinearizeAffectedFactors
(const list<Symbol>& affectedKeys) const {
list<size_t> candidates = getAffectedFactors(affectedKeys);
NonlinearFactorGraph<Config> nonlinearAffectedFactors;
// for fast lookup below
set<Symbol> affectedKeysSet;
affectedKeysSet.insert(affectedKeys.begin(), affectedKeys.end());
BOOST_FOREACH(size_t idx, candidates) {
bool inside = true;
BOOST_FOREACH(const Symbol& key, nonlinearFactors_[idx]->keys()) {
if (affectedKeysSet.find(key) == affectedKeysSet.end()) {
inside = false;
break;
}
}
if (inside)
nonlinearAffectedFactors.push_back(nonlinearFactors_[idx]);
}
return nonlinearAffectedFactors.linearize(theta_);
}
/* ************************************************************************* */
// find intermediate (linearized) factors from cache that are passed into the affected area
template<class Conditional, class Config>
FactorGraph<GaussianFactor> ISAM2<Conditional, Config>::getCachedBoundaryFactors(Cliques& orphans) {
FactorGraph<GaussianFactor> cachedBoundary;
BOOST_FOREACH(sharedClique orphan, orphans) {
// find the last variable that was eliminated
const Symbol& key = orphan->ordering().back();
// retrieve the cached factor and add to boundary
cachedBoundary.push_back(cached_[key]);
}
return cachedBoundary;
}
/* ************************************************************************* */
template<class Conditional, class Config>
boost::shared_ptr<set<Symbol> > ISAM2<Conditional, Config>::recalculate(const list<Symbol>& markedKeys, const FactorGraph<GaussianFactor>* newFactors) {
// Input: BayesTree(this), newFactors
//#define PRINT_STATS // figures for paper, disable for timing
#ifdef PRINT_STATS
static int counter = 0;
int maxClique = 0;
double avgClique = 0;
int numCliques = 0;
int nnzR = 0;
if (counter>0) { // cannot call on empty tree
GaussianISAM2_P::CliqueData cdata = this->getCliqueData();
GaussianISAM2_P::CliqueStats cstats = cdata.getStats();
maxClique = cstats.maxConditionalSize;
avgClique = cstats.avgConditionalSize;
numCliques = cdata.conditionalSizes.size();
nnzR = calculate_nnz(this->root());
}
counter++;
#endif
// 1. Remove top of Bayes tree and convert to a factor graph:
// (a) For each affected variable, remove the corresponding clique and all parents up to the root.
// (b) Store orphaned sub-trees \BayesTree_{O} of removed cliques.
tic("re-removetop");
Cliques orphans;
BayesNet<GaussianConditional> affectedBayesNet;
this->removeTop(markedKeys, affectedBayesNet, orphans);
toc("re-removetop");
// FactorGraph<GaussianFactor> factors(affectedBayesNet);
// bug was here: we cannot reuse the original factors, because then the cached factors get messed up
// [all the necessary data is actually contained in the affectedBayesNet, including what was passed in from the boundaries,
// so this would be correct; however, in the process we also generate new cached_ entries that will be wrong (ie. they don't
// contain what would be passed up at a certain point if batch elimination was done, but that's what we need); we could choose
// not to update cached_ from here, but then the new information (and potentially different variable ordering) is not reflected
// in the cached_ values which again will be wrong]
// so instead we have to retrieve the original linearized factors AND add the cached factors from the boundary
// BEGIN OF COPIED CODE
tic("re-lookup");
// ordering provides all keys in conditionals, there cannot be others because path to root included
list<Symbol> affectedKeys = affectedBayesNet.ordering();
FactorGraph<GaussianFactor> factors(*relinearizeAffectedFactors(affectedKeys));
lastAffectedMarkedCount = markedKeys.size();
lastAffectedVariableCount = affectedKeys.size();
lastAffectedFactorCount = factors.size();
#ifdef PRINT_STATS
// output for generating figures
cout << "linear: #markedKeys: " << markedKeys.size() << " #affectedVariables: " << affectedKeys.size()
<< " #affectedFactors: " << factors.size() << " maxCliqueSize: " << maxClique
<< " avgCliqueSize: " << avgClique << " #Cliques: " << numCliques << " nnzR: " << nnzR << endl;
#endif
toc("re-lookup");
tic("re-cached");
// add the cached intermediate results from the boundary of the orphans ...
FactorGraph<GaussianFactor> cachedBoundary = getCachedBoundaryFactors(orphans);
factors.push_back(cachedBoundary);
toc("re-cached");
// END OF COPIED CODE
// 2. Add the new factors \Factors' into the resulting factor graph
tic("re-newfactors");
if (newFactors) {
factors.push_back(*newFactors);
}
toc("re-newfactors");
// 3. Re-order and eliminate the factor graph into a Bayes net (Algorithm [alg:eliminate]), and re-assemble into a new Bayes tree (Algorithm [alg:BayesTree])
tic("re-order");
// create an ordering for the new and contaminated factors
// markedKeys are passed in: those variables will be forced to the end in the ordering
set<Symbol> markedKeysSet;
markedKeysSet.insert(markedKeys.begin(), markedKeys.end());
Ordering ordering = factors.getConstrainedOrdering(markedKeysSet); // intelligent ordering
// Ordering ordering = factors.getOrdering(); // original ordering, yields bad performance
toc("re-order");
// eliminate into a Bayes net
tic("eliminate");
boost::shared_ptr<GaussianBayesNet> bayesNet = _eliminate(factors, cached_, ordering);
toc("eliminate");
tic("re-assemble");
// Create Index from ordering
IndexTable<Symbol> index(ordering);
// insert conditionals back in, straight into the topless bayesTree
typename BayesNet<Conditional>::const_reverse_iterator rit;
for ( rit=bayesNet->rbegin(); rit != bayesNet->rend(); ++rit ) {
this->insert(*rit, index);
}
lastNnzTop = calculate_nnz(this->root());
// Save number of affectedCliques
lastAffectedCliqueCount = this->size();
toc("re-assemble");
// 4. Insert the orphans back into the new Bayes tree.
tic("re-orphan");
// add orphans to the bottom of the new tree
BOOST_FOREACH(sharedClique orphan, orphans) {
Symbol parentRepresentative = findParentClique(orphan->separator_, index);
sharedClique parent = (*this)[parentRepresentative];
parent->children_ += orphan;
orphan->parent_ = parent; // set new parent!
}
toc("re-orphan");
// Output: BayesTree(this)
boost::shared_ptr<set<Symbol> > affectedKeysSet(new set<Symbol>());
affectedKeysSet->insert(affectedKeys.begin(), affectedKeys.end());
return affectedKeysSet;
}
/* ************************************************************************* */
template<class Conditional, class Config>
void ISAM2<Conditional, Config>::linear_update(const FactorGraph<GaussianFactor>& newFactors) {
const list<Symbol> markedKeys = newFactors.keys();
recalculate(markedKeys, &newFactors);
}
/* ************************************************************************* */
// find all variables that are directly connected by a measurement to one of the marked variables
template<class Conditional, class Config>
void ISAM2<Conditional, Config>::find_all(sharedClique clique, list<Symbol>& keys, const list<Symbol>& marked) {
// does the separator contain any of the variables?
bool found = false;
BOOST_FOREACH(const Symbol& key, clique->separator_) {
if (find(marked.begin(), marked.end(), key) != marked.end())
found = true;
}
if (found) {
// then add this clique
keys.push_back(clique->keys().front());
}
BOOST_FOREACH(const sharedClique& child, clique->children_) {
find_all(child, keys, marked);
}
}
/* ************************************************************************* */
template<class Conditional, class Config>
void ISAM2<Conditional, Config>::update(
const NonlinearFactorGraph<Config>& newFactors, const Config& newTheta,
double wildfire_threshold, double relinearize_threshold, bool relinearize) {
static int count = 0;
count++;
lastAffectedVariableCount = 0;
lastAffectedFactorCount = 0;
lastAffectedCliqueCount = 0;
lastAffectedMarkedCount = 0;
lastBacksubVariableCount = 0;
lastNnzTop = 0;
tic("all");
tic("step1");
// 1. Add any new factors \Factors:=\Factors\cup\Factors'.
nonlinearFactors_.push_back(newFactors);
toc("step1");
tic("step2");
// 2. Initialize any new variables \Theta_{new} and add \Theta:=\Theta\cup\Theta_{new}.
theta_.insert(newTheta);
toc("step2");
tic("step3");
// 3. Mark linear update
list<Symbol> markedKeys = newFactors.keys();
toc("step3");
//#define SEPARATE_STEPS
#ifdef SEPARATE_STEPS // original algorithm from paper: separate relin and optimize
boost::shared_ptr<GaussianFactorGraph> linearFactors = newFactors.linearize(theta_);
recalculate(markedKeys, &(*linearFactors));
markedKeys.clear();
delta_ = optimize2(*this, wildfire_threshold);
#endif
VectorConfig deltaMarked;
if (relinearize && count%10 == 0) { // todo: every n steps
tic("step4");
// 4. Mark keys in \Delta above threshold \beta: J=\{\Delta_{j}\in\Delta|\Delta_{j}\geq\beta\}.
list<Symbol> markedRelin;
for (VectorConfig::const_iterator it = delta_.begin(); it!=delta_.end(); it++) {
const Symbol& key = it->first;
const Vector& v = it->second;
if (max(abs(v)) >= relinearize_threshold) {
markedRelin.push_back(key);
deltaMarked.insert(key, v);
}
}
toc("step4");
tic("step5");
// 5. Mark all cliques that involve marked variables \Theta_{J} and all their ancestors.
list<Symbol> affectedKeys;
if (markedRelin.size()>0) {
// mark all cliques that involve marked variables
affectedKeys = markedRelin; // add all marked
tic("fluid-find_all");
find_all(this->root(), affectedKeys, markedRelin); // add other cliques that have the marked ones in the separator
affectedKeys.sort(); // remove duplicates
affectedKeys.unique();
toc("fluid-find_all");
}
// merge with markedKeys
markedKeys.splice(markedKeys.begin(), affectedKeys, affectedKeys.begin(), affectedKeys.end());
markedKeys.sort(); // remove duplicates
markedKeys.unique();
toc("step5");
}
tic("step6");
// 6. Update linearization point for marked variables: \Theta_{J}:=\Theta_{J}+\Delta_{J}.
if (deltaMarked.size()>0) {
theta_ = theta_.expmap(deltaMarked);
}
toc("step6");
#ifndef SEPARATE_STEPS
tic("step7");
// 7. Linearize new factors
boost::shared_ptr<GaussianFactorGraph> linearFactors = newFactors.linearize(theta_);
toc("step7");
tic("step8");
// 8. Redo top of Bayes tree
boost::shared_ptr<set<Symbol> > replacedKeys = recalculate(markedKeys, &(*linearFactors));
toc("step8");
#else
recalculate(markedKeys);
#endif
tic("step9");
// 9. Solve
if (wildfire_threshold<=0.) {
delta_ = *(optimize2(this->root()));
lastBacksubVariableCount = theta_.size();
} else {
lastBacksubVariableCount = optimize2(this->root(), wildfire_threshold, *replacedKeys, delta_); // modifies delta_
}
toc("step9");
toc("all");
tictoc_print(); // switch on/off at top of file (#if 1/#if 0)
}
/* ************************************************************************* */
}
/// namespace gtsam