gtsam/gtsam_unstable/slam/tests/testTOAFactor.cpp

134 lines
4.2 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testTOAFactor.cpp
* @brief Unit tests for "Time of Arrival" factor
* @author Frank Dellaert
* @author Jay Chakravarty
* @date December 2014
*/
#include <gtsam_unstable/geometry/Event.h>
#include <gtsam/nonlinear/ExpressionFactorGraph.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/base/numericalDerivative.h>
#include <CppUnitLite/TestHarness.h>
#include <boost/format.hpp>
#include <boost/bind.hpp>
using namespace std;
using namespace gtsam;
// typedefs
typedef Eigen::Matrix<double, 1, 1> Vector1;
typedef Expression<double> Double_;
typedef Expression<Point3> Point3_;
typedef Expression<Event> Event_;
// units
static const double ms = 1e-3;
static const double cm = 1e-2;
// Create a noise model for the TOA error
static SharedNoiseModel model(noiseModel::Isotropic::Sigma(1, 0.5 * ms));
static const double timeOfEvent = 25;
static const Event exampleEvent(timeOfEvent, 1, 0, 0);
static const Point3 microphoneAt0(0,0,0);
//*****************************************************************************
TEST( TOAFactor, NewWay ) {
Key key = 12;
Event_ eventExpression(key);
Point3_ microphoneConstant(microphoneAt0); // constant expression
double measurement = 7;
Double_ expression(&Event::toa, eventExpression, microphoneConstant);
ExpressionFactor<double> factor(model, measurement, expression);
}
//*****************************************************************************
TEST( TOAFactor, WholeEnchilada ) {
static const bool verbose = false;
// Create microphones
const double height = 0.5;
vector<Point3> microphones;
microphones.push_back(Point3(0, 0, height));
microphones.push_back(Point3(403 * cm, 0, height));
microphones.push_back(Point3(403 * cm, 403 * cm, height));
microphones.push_back(Point3(0, 403 * cm, 2 * height));
EXPECT_LONGS_EQUAL(4, microphones.size());
// microphones.push_back(Point3(200 * cm, 200 * cm, height));
// Create a ground truth point
const double timeOfEvent = 0;
Event groundTruthEvent(timeOfEvent, 245 * cm, 201.5 * cm, (212 - 45) * cm);
// Simulate simulatedTOA
size_t K = microphones.size();
vector<double> simulatedTOA(K);
for (size_t i = 0; i < K; i++) {
simulatedTOA[i] = groundTruthEvent.toa(microphones[i]);
if (verbose) {
cout << "mic" << i << " = " << microphones[i] << endl;
cout << "z" << i << " = " << simulatedTOA[i] / ms << endl;
}
}
// Now, estimate using non-linear optimization
ExpressionFactorGraph graph;
Key key = 12;
Event_ eventExpression(key);
for (size_t i = 0; i < K; i++) {
Point3_ microphone_i(microphones[i]); // constant expression
Double_ predictTOA(&Event::toa, eventExpression, microphone_i);
graph.addExpressionFactor(predictTOA, simulatedTOA[i], model);
}
/// Print the graph
if (verbose)
GTSAM_PRINT(graph);
// Create initial estimate
Values initialEstimate;
//Event estimatedEvent(timeOfEvent -10, 200 * cm, 150 * cm, 350 * cm);
Vector4 delta;
delta << 0.1, 0.1, -0.1, 0.1;
Event estimatedEvent = groundTruthEvent.retract(delta);
initialEstimate.insert(key, estimatedEvent);
// Print
if (verbose)
initialEstimate.print("Initial Estimate:\n");
// Optimize using Levenberg-Marquardt optimization.
LevenbergMarquardtParams params;
params.setAbsoluteErrorTol(1e-10);
if (verbose)
params.setVerbosity("ERROR");
LevenbergMarquardtOptimizer optimizer(graph, initialEstimate, params);
Values result = optimizer.optimize();
if (verbose)
result.print("Final Result:\n");
EXPECT(assert_equal(groundTruthEvent, result.at<Event>(key), 1e-6));
}
//*****************************************************************************
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
//*****************************************************************************