112 lines
3.3 KiB
C++
112 lines
3.3 KiB
C++
/* ----------------------------------------------------------------------------
|
||
|
||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||
* Atlanta, Georgia 30332-0415
|
||
* All Rights Reserved
|
||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||
|
||
* See LICENSE for the license information
|
||
|
||
* -------------------------------------------------------------------------- */
|
||
|
||
/**
|
||
* @file LIEKF_NavstateExample.cpp
|
||
* @brief Example of a Left-Invariant Extended Kalman Filter on NavState
|
||
* using IMU (predict) and GPS (update) measurements.
|
||
* @date April 25, 2025
|
||
* @authors Scott Baker, Matt Kielo, Frank Dellaert
|
||
*/
|
||
|
||
#include <gtsam/base/Matrix.h>
|
||
#include <gtsam/base/OptionalJacobian.h>
|
||
#include <gtsam/navigation/NavState.h>
|
||
#include <gtsam/navigation/LIEKF.h>
|
||
|
||
#include <iostream>
|
||
|
||
using namespace std;
|
||
using namespace gtsam;
|
||
|
||
/**
|
||
* @brief Left-invariant dynamics for NavState.
|
||
* @param X Current state (unused for left-invariant error dynamics).
|
||
* @param imu 6×1 vector [a; ω]: linear accel (first 3) and angular vel (last
|
||
* 3).
|
||
* @param H Optional 9×9 Jacobian w.r.t. X (always zero here).
|
||
* @return 9×1 tangent: [ω; 0₃; a].
|
||
*/
|
||
Vector9 dynamics(const NavState& X, const Vector6& imu,
|
||
OptionalJacobian<9, 9> H = {}) {
|
||
auto a = imu.head<3>();
|
||
auto w = imu.tail<3>();
|
||
Vector9 xi;
|
||
xi << w, Vector3::Zero(), a;
|
||
if (H) *H = Matrix9::Zero();
|
||
return xi;
|
||
}
|
||
|
||
/**
|
||
* @brief GPS measurement model: returns position and its Jacobian.
|
||
* @param X Current state.
|
||
* @param H Optional 3×9 Jacobian w.r.t. X.
|
||
* @return 3×1 position vector.
|
||
*/
|
||
Vector3 h_gps(const NavState& X, OptionalJacobian<3, 9> H = {}) {
|
||
if (H) {
|
||
// H = [ 0₃×3, 0₃×3, R ]
|
||
*H << Z_3x3, Z_3x3, X.R();
|
||
}
|
||
return X.t();
|
||
}
|
||
|
||
int main() {
|
||
// Initial state, covariance, and time step
|
||
NavState X0;
|
||
Matrix9 P0 = Matrix9::Identity() * 0.1;
|
||
double dt = 1.0;
|
||
|
||
// Create the filter with the initial state and covariance.
|
||
LIEKF<NavState> ekf(X0, P0);
|
||
|
||
// Process & measurement noise
|
||
Matrix9 Q = Matrix9::Identity() * 0.01;
|
||
Matrix3 R = Matrix3::Identity() * 0.5;
|
||
|
||
// Create the IMU measurements of the form (linear_acceleration,
|
||
// angular_velocity)
|
||
Vector6 imu1, imu2;
|
||
imu1 << 0.1, 0.0, 0.0, 0.0, 0.2, 0.0;
|
||
imu2 << 0.0, 0.3, 0.0, 0.4, 0.0, 0.0;
|
||
|
||
// Create the GPS measurements of the form (px, py, pz)
|
||
Vector3 z1, z2;
|
||
z1 << 0.3, 0.0, 0.0;
|
||
z2 << 0.6, 0.0, 0.0;
|
||
|
||
cout << "=== Initialization ===\n"
|
||
<< "X0: " << ekf.state() << "\n"
|
||
<< "P0: " << ekf.covariance() << "\n\n";
|
||
|
||
ekf.predict(dynamics, imu1, dt, Q);
|
||
cout << "--- After first predict ---\n"
|
||
<< "X: " << ekf.state() << "\n"
|
||
<< "P: " << ekf.covariance() << "\n\n";
|
||
|
||
ekf.update(h_gps, z1, R);
|
||
cout << "--- After first update ---\n"
|
||
<< "X: " << ekf.state() << "\n"
|
||
<< "P: " << ekf.covariance() << "\n\n";
|
||
|
||
ekf.predict(dynamics, imu2, dt, Q);
|
||
cout << "--- After second predict ---\n"
|
||
<< "X: " << ekf.state() << "\n"
|
||
<< "P: " << ekf.covariance() << "\n\n";
|
||
|
||
ekf.update(h_gps, z2, R);
|
||
cout << "--- After second update ---\n"
|
||
<< "X: " << ekf.state() << "\n"
|
||
<< "P: " << ekf.covariance() << "\n";
|
||
|
||
return 0;
|
||
}
|