275 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			275 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file testGaussianJunctionTreeB.cpp
 | 
						|
 * @date Jul 8, 2010
 | 
						|
 * @author nikai
 | 
						|
 */
 | 
						|
 | 
						|
#include <tests/smallExample.h>
 | 
						|
#include <gtsam/sam/BearingRangeFactor.h>
 | 
						|
#include <gtsam/slam/BetweenFactor.h>
 | 
						|
#include <gtsam/nonlinear/PriorFactor.h>
 | 
						|
#include <gtsam/geometry/Pose2.h>
 | 
						|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | 
						|
#include <gtsam/nonlinear/Values.h>
 | 
						|
#include <gtsam/linear/GaussianBayesNet.h>
 | 
						|
#include <gtsam/linear/GaussianConditional.h>
 | 
						|
#include <gtsam/linear/GaussianFactor.h>
 | 
						|
#include <gtsam/linear/GaussianFactorGraph.h>
 | 
						|
#include <gtsam/linear/GaussianEliminationTree.h>
 | 
						|
#include <gtsam/linear/GaussianJunctionTree.h>
 | 
						|
#include <gtsam/linear/HessianFactor.h>
 | 
						|
#include <gtsam/linear/JacobianFactor.h>
 | 
						|
#include <gtsam/linear/NoiseModel.h>
 | 
						|
#include <gtsam/linear/VectorValues.h>
 | 
						|
#include <gtsam/symbolic/SymbolicEliminationTree.h>
 | 
						|
#include <gtsam/inference/BayesTree.h>
 | 
						|
#include <gtsam/inference/ClusterTree.h>
 | 
						|
#include <gtsam/inference/Ordering.h>
 | 
						|
#include <gtsam/inference/Symbol.h>
 | 
						|
#include <gtsam/base/Matrix.h>
 | 
						|
#include <gtsam/base/Testable.h>
 | 
						|
 | 
						|
#include <CppUnitLite/TestHarness.h>
 | 
						|
 | 
						|
#include <cmath>
 | 
						|
#include <list>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
#include <iostream>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace gtsam;
 | 
						|
using namespace example;
 | 
						|
 | 
						|
using symbol_shorthand::X;
 | 
						|
using symbol_shorthand::L;
 | 
						|
 | 
						|
/* ************************************************************************* *
 | 
						|
 Bayes tree for smoother with "nested dissection" ordering:
 | 
						|
 C1     x5 x6 x4
 | 
						|
 C2      x3 x2 : x4
 | 
						|
 C3        x1 : x2
 | 
						|
 C4      x7 : x6
 | 
						|
 */
 | 
						|
TEST( GaussianJunctionTreeB, constructor2 ) {
 | 
						|
  // create a graph
 | 
						|
  NonlinearFactorGraph nlfg;
 | 
						|
  Values values;
 | 
						|
  std::tie(nlfg, values) = createNonlinearSmoother(7);
 | 
						|
  SymbolicFactorGraph::shared_ptr symbolic = nlfg.symbolic();
 | 
						|
 | 
						|
  // linearize
 | 
						|
  GaussianFactorGraph::shared_ptr fg = nlfg.linearize(values);
 | 
						|
 | 
						|
  const Ordering ordering {X(1), X(3), X(5), X(7), X(2), X(6), X(4)};
 | 
						|
 | 
						|
  // create an ordering
 | 
						|
  GaussianEliminationTree etree(*fg, ordering);
 | 
						|
  SymbolicEliminationTree stree(*symbolic, ordering);
 | 
						|
  GaussianJunctionTree actual(etree);
 | 
						|
 | 
						|
  Ordering o324;
 | 
						|
  o324 += X(3), X(2), X(4);
 | 
						|
  Ordering o56;
 | 
						|
  o56 += X(5), X(6);
 | 
						|
  Ordering o7;
 | 
						|
  o7 += X(7);
 | 
						|
  Ordering o1;
 | 
						|
  o1 += X(1);
 | 
						|
 | 
						|
  // Can no longer test these:
 | 
						|
//  Ordering sep1;
 | 
						|
//  Ordering sep2; sep2 += X(4);
 | 
						|
//  Ordering sep3; sep3 += X(6);
 | 
						|
//  Ordering sep4; sep4 += X(2);
 | 
						|
 | 
						|
  GaussianJunctionTree::sharedNode x324 = actual.roots().front();
 | 
						|
  LONGS_EQUAL(2, x324->children.size());
 | 
						|
  GaussianJunctionTree::sharedNode x1 = x324->children.front();
 | 
						|
  GaussianJunctionTree::sharedNode x56 = x324->children.back();
 | 
						|
  if (x1->children.size() > 0)
 | 
						|
    x1.swap(x56); // makes it work with different tie-breakers
 | 
						|
 | 
						|
  LONGS_EQUAL(0, x1->children.size());
 | 
						|
  LONGS_EQUAL(1, x56->children.size());
 | 
						|
  GaussianJunctionTree::sharedNode x7 = x56->children[0];
 | 
						|
  LONGS_EQUAL(0, x7->children.size());
 | 
						|
 | 
						|
  EXPECT(assert_equal(o324, x324->orderedFrontalKeys));
 | 
						|
  EXPECT_LONGS_EQUAL(5, x324->factors.size());
 | 
						|
  EXPECT_LONGS_EQUAL(9, x324->problemSize_);
 | 
						|
 | 
						|
  EXPECT(assert_equal(o56, x56->orderedFrontalKeys));
 | 
						|
  EXPECT_LONGS_EQUAL(4, x56->factors.size());
 | 
						|
  EXPECT_LONGS_EQUAL(9, x56->problemSize_);
 | 
						|
 | 
						|
  EXPECT(assert_equal(o7, x7->orderedFrontalKeys));
 | 
						|
  EXPECT_LONGS_EQUAL(2, x7->factors.size());
 | 
						|
  EXPECT_LONGS_EQUAL(4, x7->problemSize_);
 | 
						|
 | 
						|
  EXPECT(assert_equal(o1, x1->orderedFrontalKeys));
 | 
						|
  EXPECT_LONGS_EQUAL(2, x1->factors.size());
 | 
						|
  EXPECT_LONGS_EQUAL(4, x1->problemSize_);
 | 
						|
}
 | 
						|
 | 
						|
///* ************************************************************************* */
 | 
						|
//TEST( GaussianJunctionTreeB, optimizeMultiFrontal )
 | 
						|
//{
 | 
						|
//  // create a graph
 | 
						|
//  GaussianFactorGraph fg;
 | 
						|
//  Ordering ordering;
 | 
						|
//  std::tie(fg,ordering) = createSmoother(7);
 | 
						|
//
 | 
						|
//  // optimize the graph
 | 
						|
//  GaussianJunctionTree tree(fg);
 | 
						|
//  VectorValues actual = tree.optimize(&EliminateQR);
 | 
						|
//
 | 
						|
//  // verify
 | 
						|
//  VectorValues expected(vector<size_t>(7,2)); // expected solution
 | 
						|
//  Vector v = Vector2(0., 0.);
 | 
						|
//  for (int i=1; i<=7; i++)
 | 
						|
//    expected[ordering[X(i)]] = v;
 | 
						|
//  EXPECT(assert_equal(expected,actual));
 | 
						|
//}
 | 
						|
//
 | 
						|
///* ************************************************************************* */
 | 
						|
//TEST( GaussianJunctionTreeB, optimizeMultiFrontal2)
 | 
						|
//{
 | 
						|
//  // create a graph
 | 
						|
//  example::Graph nlfg = createNonlinearFactorGraph();
 | 
						|
//  Values noisy = createNoisyValues();
 | 
						|
//  Ordering ordering; ordering += X(1),X(2),L(1);
 | 
						|
//  GaussianFactorGraph fg = *nlfg.linearize(noisy, ordering);
 | 
						|
//
 | 
						|
//  // optimize the graph
 | 
						|
//  GaussianJunctionTree tree(fg);
 | 
						|
//  VectorValues actual = tree.optimize(&EliminateQR);
 | 
						|
//
 | 
						|
//  // verify
 | 
						|
//  VectorValues expected = createCorrectDelta(ordering); // expected solution
 | 
						|
//  EXPECT(assert_equal(expected,actual));
 | 
						|
//}
 | 
						|
//
 | 
						|
///* ************************************************************************* */
 | 
						|
//TEST(GaussianJunctionTreeB, slamlike) {
 | 
						|
//  Values init;
 | 
						|
//  NonlinearFactorGraph newfactors;
 | 
						|
//  NonlinearFactorGraph fullgraph;
 | 
						|
//  SharedDiagonal odoNoise = noiseModel::Diagonal::Sigmas((Vector(3) << 0.1, 0.1, M_PI/100.0));
 | 
						|
//  SharedDiagonal brNoise = noiseModel::Diagonal::Sigmas((Vector(2) << M_PI/100.0, 0.1));
 | 
						|
//
 | 
						|
//  size_t i = 0;
 | 
						|
//
 | 
						|
//  newfactors = NonlinearFactorGraph();
 | 
						|
//  newfactors.add(PriorFactor<Pose2>(X(0), Pose2(0.0, 0.0, 0.0), odoNoise));
 | 
						|
//  init.insert(X(0), Pose2(0.01, 0.01, 0.01));
 | 
						|
//  fullgraph.push_back(newfactors);
 | 
						|
//
 | 
						|
//  for( ; i<5; ++i) {
 | 
						|
//    newfactors = NonlinearFactorGraph();
 | 
						|
//    newfactors.add(BetweenFactor<Pose2>(X(i), X(i+1), Pose2(1.0, 0.0, 0.0), odoNoise));
 | 
						|
//    init.insert(X(i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
 | 
						|
//    fullgraph.push_back(newfactors);
 | 
						|
//  }
 | 
						|
//
 | 
						|
//  newfactors = NonlinearFactorGraph();
 | 
						|
//  newfactors.add(BetweenFactor<Pose2>(X(i), X(i+1), Pose2(1.0, 0.0, 0.0), odoNoise));
 | 
						|
//  newfactors.add(BearingRangeFactor<Pose2,Point2>(X(i), L(0), Rot2::fromAngle(M_PI/4.0), 5.0, brNoise));
 | 
						|
//  newfactors.add(BearingRangeFactor<Pose2,Point2>(X(i), L(1), Rot2::fromAngle(-M_PI/4.0), 5.0, brNoise));
 | 
						|
//  init.insert(X(i+1), Pose2(1.01, 0.01, 0.01));
 | 
						|
//  init.insert(L(0), Point2(5.0/sqrt(2.0), 5.0/sqrt(2.0)));
 | 
						|
//  init.insert(L(1), Point2(5.0/sqrt(2.0), -5.0/sqrt(2.0)));
 | 
						|
//  fullgraph.push_back(newfactors);
 | 
						|
//  ++ i;
 | 
						|
//
 | 
						|
//  for( ; i<5; ++i) {
 | 
						|
//    newfactors = NonlinearFactorGraph();
 | 
						|
//    newfactors.add(BetweenFactor<Pose2>(X(i), X(i+1), Pose2(1.0, 0.0, 0.0), odoNoise));
 | 
						|
//    init.insert(X(i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
 | 
						|
//    fullgraph.push_back(newfactors);
 | 
						|
//  }
 | 
						|
//
 | 
						|
//  newfactors = NonlinearFactorGraph();
 | 
						|
//  newfactors.add(BetweenFactor<Pose2>(X(i), X(i+1), Pose2(1.0, 0.0, 0.0), odoNoise));
 | 
						|
//  newfactors.add(BearingRangeFactor<Pose2,Point2>(X(i), L(0), Rot2::fromAngle(M_PI/4.0 + M_PI/16.0), 4.5, brNoise));
 | 
						|
//  newfactors.add(BearingRangeFactor<Pose2,Point2>(X(i), L(1), Rot2::fromAngle(-M_PI/4.0 + M_PI/16.0), 4.5, brNoise));
 | 
						|
//  init.insert(X(i+1), Pose2(6.9, 0.1, 0.01));
 | 
						|
//  fullgraph.push_back(newfactors);
 | 
						|
//  ++ i;
 | 
						|
//
 | 
						|
//  // Compare solutions
 | 
						|
//  Ordering ordering = *fullgraph.orderingCOLAMD(init);
 | 
						|
//  GaussianFactorGraph linearized = *fullgraph.linearize(init, ordering);
 | 
						|
//
 | 
						|
//  GaussianJunctionTree gjt(linearized);
 | 
						|
//  VectorValues deltaactual = gjt.optimize(&EliminateQR);
 | 
						|
//  Values actual = init.retract(deltaactual, ordering);
 | 
						|
//
 | 
						|
//  GaussianBayesNet gbn = *GaussianSequentialSolver(linearized).eliminate();
 | 
						|
//  VectorValues delta = optimize(gbn);
 | 
						|
//  Values expected = init.retract(delta, ordering);
 | 
						|
//
 | 
						|
//  EXPECT(assert_equal(expected, actual));
 | 
						|
//}
 | 
						|
//
 | 
						|
///* ************************************************************************* */
 | 
						|
//TEST(GaussianJunctionTreeB, simpleMarginal) {
 | 
						|
//
 | 
						|
//  typedef BayesTree<GaussianConditional> GaussianBayesTree;
 | 
						|
//
 | 
						|
//  // Create a simple graph
 | 
						|
//  NonlinearFactorGraph fg;
 | 
						|
//  fg.add(PriorFactor<Pose2>(X(0), Pose2(), noiseModel::Isotropic::Sigma(3, 10.0)));
 | 
						|
//  fg.add(BetweenFactor<Pose2>(X(0), X(1), Pose2(1.0, 0.0, 0.0), noiseModel::Diagonal::Sigmas(Vector3(10.0, 1.0, 1.0))));
 | 
						|
//
 | 
						|
//  Values init;
 | 
						|
//  init.insert(X(0), Pose2());
 | 
						|
//  init.insert(X(1), Pose2(1.0, 0.0, 0.0));
 | 
						|
//
 | 
						|
//  Ordering ordering;
 | 
						|
//  ordering += X(1), X(0);
 | 
						|
//
 | 
						|
//  GaussianFactorGraph gfg = *fg.linearize(init, ordering);
 | 
						|
//
 | 
						|
//  // Compute marginals with both sequential and multifrontal
 | 
						|
//  Matrix expected = GaussianSequentialSolver(gfg).marginalCovariance(1);
 | 
						|
//
 | 
						|
//  Matrix actual1 = GaussianMultifrontalSolver(gfg).marginalCovariance(1);
 | 
						|
//
 | 
						|
//  // Compute marginal directly from marginal factor
 | 
						|
//  GaussianFactor::shared_ptr marginalFactor = GaussianMultifrontalSolver(gfg).marginalFactor(1);
 | 
						|
//  JacobianFactor::shared_ptr marginalJacobian = std::dynamic_pointer_cast<JacobianFactor>(marginalFactor);
 | 
						|
//  Matrix actual2 = inverse(marginalJacobian->getA(marginalJacobian->begin()).transpose() * marginalJacobian->getA(marginalJacobian->begin()));
 | 
						|
//
 | 
						|
//  // Compute marginal directly from BayesTree
 | 
						|
//  GaussianBayesTree gbt;
 | 
						|
//  gbt.insert(GaussianJunctionTree(gfg).eliminate(EliminateCholesky));
 | 
						|
//  marginalFactor = gbt.marginalFactor(1, EliminateCholesky);
 | 
						|
//  marginalJacobian = std::dynamic_pointer_cast<JacobianFactor>(marginalFactor);
 | 
						|
//  Matrix actual3 = inverse(marginalJacobian->getA(marginalJacobian->begin()).transpose() * marginalJacobian->getA(marginalJacobian->begin()));
 | 
						|
//
 | 
						|
//  EXPECT(assert_equal(expected, actual1));
 | 
						|
//  EXPECT(assert_equal(expected, actual2));
 | 
						|
//  EXPECT(assert_equal(expected, actual3));
 | 
						|
//}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
int main() {
 | 
						|
  TestResult tr;
 | 
						|
  return TestRegistry::runAllTests(tr);
 | 
						|
}
 | 
						|
/* ************************************************************************* */
 | 
						|
 |