gtsam/cython/test/test_PlanarSLAMExample.py

65 lines
2.3 KiB
Python

import unittest
from gtsam import *
from math import *
import numpy as np
class TestPose2SLAMExample(unittest.TestCase):
def test_Pose2SLAMExample(self):
# Assumptions
# - All values are axis aligned
# - Robot poses are facing along the X axis (horizontal, to the right in images)
# - We have full odometry for measurements
# - The robot is on a grid, moving 2 meters each step
# Create graph container and add factors to it
graph = NonlinearFactorGraph()
# Add prior
# gaussian for prior
priorMean = Pose2(0.0, 0.0, 0.0) # prior at origin
priorNoise = noiseModel_Diagonal.Sigmas(np.array([0.3, 0.3, 0.1]))
# add directly to graph
graph.add(PriorFactorPose2(1, priorMean, priorNoise))
# Add odometry
# general noisemodel for odometry
odometryNoise = noiseModel_Diagonal.Sigmas(np.array([0.2, 0.2, 0.1]))
graph.add(BetweenFactorPose2(
1, 2, Pose2(2.0, 0.0, 0.0), odometryNoise))
graph.add(BetweenFactorPose2(
2, 3, Pose2(2.0, 0.0, pi / 2), odometryNoise))
graph.add(BetweenFactorPose2(
3, 4, Pose2(2.0, 0.0, pi / 2), odometryNoise))
graph.add(BetweenFactorPose2(
4, 5, Pose2(2.0, 0.0, pi / 2), odometryNoise))
# Add pose constraint
model = noiseModel_Diagonal.Sigmas(np.array([0.2, 0.2, 0.1]))
graph.add(BetweenFactorPose2(5, 2, Pose2(2.0, 0.0, pi / 2), model))
# Initialize to noisy points
initialEstimate = Values()
initialEstimate.insert(1, Pose2(0.5, 0.0, 0.2))
initialEstimate.insert(2, Pose2(2.3, 0.1, -0.2))
initialEstimate.insert(3, Pose2(4.1, 0.1, pi / 2))
initialEstimate.insert(4, Pose2(4.0, 2.0, pi))
initialEstimate.insert(5, Pose2(2.1, 2.1, -pi / 2))
# Optimize using Levenberg-Marquardt optimization with an ordering from
# colamd
optimizer = LevenbergMarquardtOptimizer(graph, initialEstimate)
result = optimizer.optimizeSafely()
# Plot Covariance Ellipses
marginals = Marginals(graph, result)
P = marginals.marginalCovariance(1)
pose_1 = result.atPose2(1)
self.assertTrue(pose_1.equals(Pose2(), 1e-4))
if __name__ == "__main__":
unittest.main()