65 lines
2.3 KiB
Python
65 lines
2.3 KiB
Python
import unittest
|
|
from gtsam import *
|
|
from math import *
|
|
import numpy as np
|
|
|
|
class TestPose2SLAMExample(unittest.TestCase):
|
|
|
|
def test_Pose2SLAMExample(self):
|
|
# Assumptions
|
|
# - All values are axis aligned
|
|
# - Robot poses are facing along the X axis (horizontal, to the right in images)
|
|
# - We have full odometry for measurements
|
|
# - The robot is on a grid, moving 2 meters each step
|
|
|
|
# Create graph container and add factors to it
|
|
graph = NonlinearFactorGraph()
|
|
|
|
# Add prior
|
|
# gaussian for prior
|
|
priorMean = Pose2(0.0, 0.0, 0.0) # prior at origin
|
|
priorNoise = noiseModel_Diagonal.Sigmas(np.array([0.3, 0.3, 0.1]))
|
|
# add directly to graph
|
|
graph.add(PriorFactorPose2(1, priorMean, priorNoise))
|
|
|
|
# Add odometry
|
|
# general noisemodel for odometry
|
|
odometryNoise = noiseModel_Diagonal.Sigmas(np.array([0.2, 0.2, 0.1]))
|
|
graph.add(BetweenFactorPose2(
|
|
1, 2, Pose2(2.0, 0.0, 0.0), odometryNoise))
|
|
graph.add(BetweenFactorPose2(
|
|
2, 3, Pose2(2.0, 0.0, pi / 2), odometryNoise))
|
|
graph.add(BetweenFactorPose2(
|
|
3, 4, Pose2(2.0, 0.0, pi / 2), odometryNoise))
|
|
graph.add(BetweenFactorPose2(
|
|
4, 5, Pose2(2.0, 0.0, pi / 2), odometryNoise))
|
|
|
|
# Add pose constraint
|
|
model = noiseModel_Diagonal.Sigmas(np.array([0.2, 0.2, 0.1]))
|
|
graph.add(BetweenFactorPose2(5, 2, Pose2(2.0, 0.0, pi / 2), model))
|
|
|
|
# Initialize to noisy points
|
|
initialEstimate = Values()
|
|
initialEstimate.insert(1, Pose2(0.5, 0.0, 0.2))
|
|
initialEstimate.insert(2, Pose2(2.3, 0.1, -0.2))
|
|
initialEstimate.insert(3, Pose2(4.1, 0.1, pi / 2))
|
|
initialEstimate.insert(4, Pose2(4.0, 2.0, pi))
|
|
initialEstimate.insert(5, Pose2(2.1, 2.1, -pi / 2))
|
|
|
|
# Optimize using Levenberg-Marquardt optimization with an ordering from
|
|
# colamd
|
|
optimizer = LevenbergMarquardtOptimizer(graph, initialEstimate)
|
|
result = optimizer.optimizeSafely()
|
|
|
|
# Plot Covariance Ellipses
|
|
marginals = Marginals(graph, result)
|
|
P = marginals.marginalCovariance(1)
|
|
|
|
pose_1 = result.atPose2(1)
|
|
self.assertTrue(pose_1.equals(Pose2(), 1e-4))
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|