501 lines
20 KiB
C++
501 lines
20 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file VectorValues.h
|
|
* @brief Factor Graph Values
|
|
* @author Richard Roberts
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <gtsam/base/Vector.h>
|
|
#include <gtsam/global_includes.h>
|
|
|
|
#include <boost/format.hpp>
|
|
#include <boost/lexical_cast.hpp>
|
|
#include <boost/foreach.hpp>
|
|
#include <boost/shared_ptr.hpp>
|
|
#include <numeric>
|
|
#include <stdexcept>
|
|
|
|
namespace gtsam {
|
|
|
|
// Forward declarations
|
|
class Permutation;
|
|
|
|
/**
|
|
* This class represents a collection of vector-valued variables associated
|
|
* each with a unique integer index. It is typically used to store the variables
|
|
* of a GaussianFactorGraph. Optimizing a GaussianFactorGraph or GaussianBayesNet
|
|
* returns this class.
|
|
*
|
|
* For basic usage, such as receiving a linear solution from gtsam solving functions,
|
|
* or creating this class in unit tests and examples where speed is not important,
|
|
* you can use a simple interface:
|
|
* - The default constructor VectorValues() to create this class
|
|
* - insert(Index, const Vector&) to add vector variables
|
|
* - operator[](Index) for read and write access to stored variables
|
|
* - \ref exists (Index) to check if a variable is present
|
|
* - Other facilities like iterators, size(), dim(), etc.
|
|
*
|
|
* Indices can be non-consecutive and inserted out-of-order, but you should not
|
|
* use indices that are larger than a reasonable array size because the indices
|
|
* correspond to positions in an internal array.
|
|
*
|
|
* Example:
|
|
* \code
|
|
VectorValues values;
|
|
values.insert(3, Vector_(3, 1.0, 2.0, 3.0));
|
|
values.insert(4, Vector_(2, 4.0, 5.0));
|
|
values.insert(0, Vector_(4, 6.0, 7.0, 8.0, 9.0));
|
|
|
|
// Prints [ 3.0 4.0 ]
|
|
gtsam::print(values[1]);
|
|
|
|
// Prints [ 8.0 9.0 ]
|
|
values[1] = Vector_(2, 8.0, 9.0);
|
|
gtsam::print(values[1]);
|
|
\endcode
|
|
*
|
|
* <h2>Advanced Interface and Performance Information</h2>
|
|
*
|
|
* Internally, all vector values are stored as part of one large vector. In
|
|
* gtsam this vector is always pre-allocated for efficiency, using the
|
|
* advanced interface described below. Accessing and modifying already-allocated
|
|
* values is \f$ O(1) \f$. Using the insert() function of the standard interface
|
|
* is slow because it requires re-allocating the internal vector.
|
|
*
|
|
* For advanced usage, or where speed is important:
|
|
* - Allocate space ahead of time using a pre-allocating constructor
|
|
* (\ref AdvancedConstructors "Advanced Constructors"), Zero(),
|
|
* SameStructure(), resize(), or append(). Do not use
|
|
* insert(Index, const Vector&), which always has to re-allocate the
|
|
* internal vector.
|
|
* - The vector() function permits access to the underlying Vector, for
|
|
* doing mathematical or other operations that require all values.
|
|
* - operator[]() returns a SubVector view of the underlying Vector,
|
|
* without copying any data.
|
|
*
|
|
* Access is through the variable index j, and returns a SubVector,
|
|
* which is a view on the underlying data structure.
|
|
*
|
|
* This class is additionally used in gradient descent and dog leg to store the gradient.
|
|
* \nosubgrouping
|
|
*/
|
|
class GTSAM_EXPORT VectorValues {
|
|
protected:
|
|
typedef std::vector<Vector> Values; ///< Typedef for the collection of Vectors making up a VectorValues
|
|
Values values_; ///< Collection of Vectors making up this VectorValues
|
|
|
|
public:
|
|
typedef Values::iterator iterator; ///< Iterator over vector values
|
|
typedef Values::const_iterator const_iterator; ///< Const iterator over vector values
|
|
typedef Values::reverse_iterator reverse_iterator; ///< Reverse iterator over vector values
|
|
typedef Values::const_reverse_iterator const_reverse_iterator; ///< Const reverse iterator over vector values
|
|
typedef boost::shared_ptr<VectorValues> shared_ptr; ///< shared_ptr to this class
|
|
|
|
/// @name Standard Constructors
|
|
/// @{
|
|
|
|
/**
|
|
* Default constructor creates an empty VectorValues.
|
|
*/
|
|
VectorValues() {}
|
|
|
|
/** Named constructor to create a VectorValues of the same structure of the
|
|
* specified one, but filled with zeros.
|
|
* @return
|
|
*/
|
|
static VectorValues Zero(const VectorValues& model);
|
|
|
|
/// @}
|
|
/// @name Standard Interface
|
|
/// @{
|
|
|
|
/** Number of variables stored, always 1 more than the highest variable index,
|
|
* even if some variables with lower indices are not present. */
|
|
Index size() const { return values_.size(); }
|
|
|
|
/** Return the dimension of variable \c j. */
|
|
size_t dim(Index j) const { checkExists(j); return (*this)[j].rows(); }
|
|
|
|
/** Return the dimension of each vector in this container */
|
|
std::vector<size_t> dims() const;
|
|
|
|
/** Check whether a variable with index \c j exists. */
|
|
bool exists(Index j) const { return j < size() && values_[j].rows() > 0; }
|
|
|
|
/** Read/write access to the vector value with index \c j, throws std::out_of_range if \c j does not exist, identical to operator[](Index). */
|
|
Vector& at(Index j) { checkExists(j); return values_[j]; }
|
|
|
|
/** Access the vector value with index \c j (const version), throws std::out_of_range if \c j does not exist, identical to operator[](Index). */
|
|
const Vector& at(Index j) const { checkExists(j); return values_[j]; }
|
|
|
|
/** Read/write access to the vector value with index \c j, throws std::out_of_range if \c j does not exist, identical to at(Index). */
|
|
Vector& operator[](Index j) { return at(j); }
|
|
|
|
/** Access the vector value with index \c j (const version), throws std::out_of_range if \c j does not exist, identical to at(Index). */
|
|
const Vector& operator[](Index j) const { return at(j); }
|
|
|
|
/** Insert a vector \c value with index \c j.
|
|
* Causes reallocation, but can insert values in any order.
|
|
* Throws an invalid_argument exception if the index \c j is already used.
|
|
* @param value The vector to be inserted.
|
|
* @param j The index with which the value will be associated.
|
|
*/
|
|
void insert(Index j, const Vector& value);
|
|
|
|
iterator begin() { return values_.begin(); } ///< Iterator over variables
|
|
const_iterator begin() const { return values_.begin(); } ///< Iterator over variables
|
|
iterator end() { return values_.end(); } ///< Iterator over variables
|
|
const_iterator end() const { return values_.end(); } ///< Iterator over variables
|
|
reverse_iterator rbegin() { return values_.rbegin(); } ///< Reverse iterator over variables
|
|
const_reverse_iterator rbegin() const { return values_.rbegin(); } ///< Reverse iterator over variables
|
|
reverse_iterator rend() { return values_.rend(); } ///< Reverse iterator over variables
|
|
const_reverse_iterator rend() const { return values_.rend(); } ///< Reverse iterator over variables
|
|
|
|
/** print required by Testable for unit testing */
|
|
void print(const std::string& str = "VectorValues: ",
|
|
const IndexFormatter& formatter = DefaultIndexFormatter) const;
|
|
|
|
/** equals required by Testable for unit testing */
|
|
bool equals(const VectorValues& x, double tol = 1e-9) const;
|
|
|
|
/// @{
|
|
/// \anchor AdvancedConstructors
|
|
/// @name Advanced Constructors
|
|
/// @}
|
|
|
|
/** Construct from a container of variable dimensions (in variable order), without initializing any values. */
|
|
template<class CONTAINER>
|
|
explicit VectorValues(const CONTAINER& dimensions) { this->append(dimensions); }
|
|
|
|
/** Construct from a container of variable dimensions (in variable order), with initial values. */
|
|
template<class CONTAINER>
|
|
explicit VectorValues(const Vector& d, const CONTAINER& dimensions) {
|
|
this->append(d, dimensions);
|
|
}
|
|
|
|
/** Construct to hold nVars vectors of varDim dimension each. */
|
|
VectorValues(Index nVars, size_t varDim) { this->resize(nVars, varDim); }
|
|
|
|
/** Named constructor to create a VectorValues that matches the structure of
|
|
* the specified VectorValues, but do not initialize the new values. */
|
|
static VectorValues SameStructure(const VectorValues& other);
|
|
|
|
/** Named constructor to create a VectorValues from a container of variable
|
|
* dimensions that is filled with zeros.
|
|
* @param dimensions A container of the dimension of each variable to create.
|
|
*/
|
|
template<class CONTAINER>
|
|
static VectorValues Zero(const CONTAINER& dimensions);
|
|
|
|
/** Named constructor to create a VectorValues filled with zeros that has
|
|
* \c nVars variables, each of dimension \c varDim
|
|
* @param nVars The number of variables to create
|
|
* @param varDim The dimension of each variable
|
|
* @return The new VectorValues
|
|
*/
|
|
static VectorValues Zero(Index nVars, size_t varDim);
|
|
|
|
/// @}
|
|
/// @name Advanced Interface
|
|
/// @{
|
|
|
|
/** Resize this VectorValues to have identical structure to other, leaving
|
|
* this VectorValues with uninitialized values.
|
|
* @param other The VectorValues whose structure to copy
|
|
*/
|
|
void resizeLike(const VectorValues& other);
|
|
|
|
/** Resize the VectorValues to hold \c nVars variables, each of dimension
|
|
* \c varDim. Any individual vectors that do not change size will keep
|
|
* their values, but any new or resized vectors will be uninitialized.
|
|
* @param nVars The number of variables to create
|
|
* @param varDim The dimension of each variable
|
|
*/
|
|
void resize(Index nVars, size_t varDim);
|
|
|
|
/** Resize the VectorValues to contain variables of the dimensions stored
|
|
* in \c dimensions. Any individual vectors that do not change size will keep
|
|
* their values, but any new or resized vectors will be uninitialized.
|
|
* @param dimensions A container of the dimension of each variable to create.
|
|
*/
|
|
template<class CONTAINER>
|
|
void resize(const CONTAINER& dimensions);
|
|
|
|
/** Append to the VectorValues to additionally contain variables of the
|
|
* dimensions stored in \c dimensions. The new variables are uninitialized,
|
|
* but this function is used to pre-allocate space for performance. This
|
|
* function preserves the original data, so all previously-existing variables
|
|
* are left unchanged.
|
|
* @param dimensions A container of the dimension of each variable to create.
|
|
*/
|
|
template<class CONTAINER>
|
|
void append(const CONTAINER& dimensions);
|
|
|
|
/** Append to the VectorValues to additionally contain variables of the
|
|
* dimensions stored in \c dimensions. Initial values for the new variables
|
|
* are extracted from the input vector, holding values for all components
|
|
* in the same order specified in the dimensions container.
|
|
* This function preserves the original data, so all previously-existing
|
|
* variables are left unchanged.
|
|
* @param d A vector holding values for all variables, which order
|
|
* specified in the below container
|
|
* @param dimensions A container of the dimension of each variable to create.
|
|
*/
|
|
template<class CONTAINER>
|
|
void append(const Vector& d, const CONTAINER& dimensions);
|
|
|
|
/** Removes the last subvector from the VectorValues */
|
|
void pop_back() { values_.pop_back(); };
|
|
|
|
/** Set all entries to zero, does not modify the size. */
|
|
void setZero();
|
|
|
|
/** Retrieve the entire solution as a single vector */
|
|
const Vector asVector() const;
|
|
|
|
/** Access a vector that is a subset of relevant indices */
|
|
const Vector vector(const std::vector<Index>& indices) const;
|
|
|
|
/** Check whether this VectorValues has the same structure, meaning has the
|
|
* same number of variables and that all variables are of the same dimension,
|
|
* as another VectorValues
|
|
* @param other The other VectorValues with which to compare structure
|
|
* @return \c true if the structure is the same, \c false if not.
|
|
*/
|
|
bool hasSameStructure(const VectorValues& other) const;
|
|
|
|
/**
|
|
* Permute the variables in the VariableIndex according to the given partial permutation
|
|
*/
|
|
void permuteInPlace(const Permutation& selector, const Permutation& permutation);
|
|
|
|
/**
|
|
* Permute the entries of this VectorValues in place
|
|
*/
|
|
void permuteInPlace(const Permutation& permutation);
|
|
|
|
/**
|
|
* Swap the data in this VectorValues with another.
|
|
*/
|
|
void swap(VectorValues& other);
|
|
|
|
/// @}
|
|
/// @name Linear algebra operations
|
|
/// @{
|
|
|
|
/** Dot product with another VectorValues, interpreting both as vectors of
|
|
* their concatenated values. */
|
|
double dot(const VectorValues& v) const;
|
|
|
|
/** Vector L2 norm */
|
|
double norm() const;
|
|
|
|
/** Squared vector L2 norm */
|
|
double squaredNorm() const;
|
|
|
|
/**
|
|
* + operator does element-wise addition. Both VectorValues must have the
|
|
* same structure (checked when NDEBUG is not defined).
|
|
*/
|
|
VectorValues operator+(const VectorValues& c) const;
|
|
|
|
/**
|
|
* + operator does element-wise subtraction. Both VectorValues must have the
|
|
* same structure (checked when NDEBUG is not defined).
|
|
*/
|
|
VectorValues operator-(const VectorValues& c) const;
|
|
|
|
/**
|
|
* += operator does element-wise addition. Both VectorValues must have the
|
|
* same structure (checked when NDEBUG is not defined).
|
|
*/
|
|
void operator+=(const VectorValues& c);
|
|
|
|
/// @}
|
|
|
|
/// @}
|
|
/// @name Matlab syntactic sugar for linear algebra operations
|
|
/// @{
|
|
|
|
inline VectorValues add(const VectorValues& c) const { return *this + c; }
|
|
inline VectorValues scale(const double a, const VectorValues& c) const { return a * (*this); }
|
|
|
|
/// @}
|
|
|
|
private:
|
|
// Throw an exception if j does not exist
|
|
void checkExists(Index j) const {
|
|
if(!exists(j)) {
|
|
const std::string msg =
|
|
(boost::format("VectorValues: requested variable index j=%1% is not in this VectorValues.") % j).str();
|
|
throw std::out_of_range(msg);
|
|
}
|
|
}
|
|
|
|
public:
|
|
|
|
/**
|
|
* scale a vector by a scalar
|
|
*/
|
|
friend VectorValues operator*(const double a, const VectorValues &v) {
|
|
VectorValues result = VectorValues::SameStructure(v);
|
|
for(Index j = 0; j < v.size(); ++j)
|
|
result.values_[j] = a * v.values_[j];
|
|
return result;
|
|
}
|
|
|
|
/// TODO: linear algebra interface seems to have been added for SPCG.
|
|
friend void scal(double alpha, VectorValues& x) {
|
|
for(Index j = 0; j < x.size(); ++j)
|
|
x.values_[j] *= alpha;
|
|
}
|
|
/// TODO: linear algebra interface seems to have been added for SPCG.
|
|
friend void axpy(double alpha, const VectorValues& x, VectorValues& y) {
|
|
if(x.size() != y.size())
|
|
throw std::invalid_argument("axpy(VectorValues) called with different vector sizes");
|
|
for(Index j = 0; j < x.size(); ++j)
|
|
if(x.values_[j].size() == y.values_[j].size())
|
|
y.values_[j] += alpha * x.values_[j];
|
|
else
|
|
throw std::invalid_argument("axpy(VectorValues) called with different vector sizes");
|
|
}
|
|
/// TODO: linear algebra interface seems to have been added for SPCG.
|
|
friend void sqrt(VectorValues &x) {
|
|
for(Index j = 0; j < x.size(); ++j)
|
|
x.values_[j] = x.values_[j].cwiseSqrt();
|
|
}
|
|
|
|
/// TODO: linear algebra interface seems to have been added for SPCG.
|
|
friend void ediv(const VectorValues& numerator, const VectorValues& denominator, VectorValues &result) {
|
|
if(numerator.size() != denominator.size() || numerator.size() != result.size())
|
|
throw std::invalid_argument("ediv(VectorValues) called with different vector sizes");
|
|
for(Index j = 0; j < numerator.size(); ++j)
|
|
if(numerator.values_[j].size() == denominator.values_[j].size() && numerator.values_[j].size() == result.values_[j].size())
|
|
result.values_[j] = numerator.values_[j].cwiseQuotient(denominator.values_[j]);
|
|
else
|
|
throw std::invalid_argument("ediv(VectorValues) called with different vector sizes");
|
|
}
|
|
|
|
/// TODO: linear algebra interface seems to have been added for SPCG.
|
|
friend void edivInPlace(VectorValues& x, const VectorValues& y) {
|
|
if(x.size() != y.size())
|
|
throw std::invalid_argument("edivInPlace(VectorValues) called with different vector sizes");
|
|
for(Index j = 0; j < x.size(); ++j)
|
|
if(x.values_[j].size() == y.values_[j].size())
|
|
x.values_[j].array() /= y.values_[j].array();
|
|
else
|
|
throw std::invalid_argument("edivInPlace(VectorValues) called with different vector sizes");
|
|
}
|
|
|
|
private:
|
|
/** Serialization function */
|
|
friend class boost::serialization::access;
|
|
template<class ARCHIVE>
|
|
void serialize(ARCHIVE & ar, const unsigned int version) {
|
|
ar & BOOST_SERIALIZATION_NVP(values_);
|
|
}
|
|
}; // VectorValues definition
|
|
|
|
// Implementations of template and inline functions
|
|
|
|
/* ************************************************************************* */
|
|
template<class CONTAINER>
|
|
void VectorValues::resize(const CONTAINER& dimensions) {
|
|
values_.clear();
|
|
append(dimensions);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
template<class CONTAINER>
|
|
void VectorValues::append(const CONTAINER& dimensions) {
|
|
size_t i = size();
|
|
values_.resize(size() + dimensions.size());
|
|
BOOST_FOREACH(size_t dim, dimensions) {
|
|
values_[i] = Vector(dim);
|
|
++ i;
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
template<class CONTAINER>
|
|
void VectorValues::append(const Vector& d, const CONTAINER& dimensions) {
|
|
size_t i = size();
|
|
size_t idx = 0;
|
|
values_.resize(size() + dimensions.size());
|
|
BOOST_FOREACH(size_t dim, dimensions) {
|
|
values_[i] = sub(d, idx, idx+dim);
|
|
++ i;
|
|
idx += dim;
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
template<class CONTAINER>
|
|
VectorValues VectorValues::Zero(const CONTAINER& dimensions) {
|
|
VectorValues ret;
|
|
ret.values_.resize(dimensions.size());
|
|
size_t i = 0;
|
|
BOOST_FOREACH(size_t dim, dimensions) {
|
|
ret.values_[i] = Vector::Zero(dim);
|
|
++ i;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
namespace internal {
|
|
/* ************************************************************************* */
|
|
// Helper function, extracts vectors with variable indices
|
|
// in the first and last iterators, and concatenates them in that order into the
|
|
// output.
|
|
template<typename ITERATOR>
|
|
const Vector extractVectorValuesSlices(const VectorValues& values, ITERATOR first, ITERATOR last, bool allowNonexistant = false) {
|
|
// Find total dimensionality
|
|
size_t dim = 0;
|
|
for(ITERATOR j = first; j != last; ++j)
|
|
// If allowNonexistant is true, skip nonexistent indices (otherwise dim will throw an error on nonexistent)
|
|
if(!allowNonexistant || values.exists(*j))
|
|
dim += values.dim(*j);
|
|
|
|
// Copy vectors
|
|
Vector ret(dim);
|
|
size_t varStart = 0;
|
|
for(ITERATOR j = first; j != last; ++j) {
|
|
// If allowNonexistant is true, skip nonexistent indices (otherwise dim will throw an error on nonexistent)
|
|
if(!allowNonexistant || values.exists(*j)) {
|
|
ret.segment(varStart, values.dim(*j)) = values[*j];
|
|
varStart += values.dim(*j);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Helper function, writes to the variables in values
|
|
// with indices iterated over by first and last, interpreting vector as the
|
|
// concatenated vectors to write.
|
|
template<class VECTOR, typename ITERATOR>
|
|
void writeVectorValuesSlices(const VECTOR& vector, VectorValues& values, ITERATOR first, ITERATOR last) {
|
|
// Copy vectors
|
|
size_t varStart = 0;
|
|
for(ITERATOR j = first; j != last; ++j) {
|
|
values[*j] = vector.segment(varStart, values[*j].rows());
|
|
varStart += values[*j].rows();
|
|
}
|
|
assert(varStart == vector.rows());
|
|
}
|
|
}
|
|
|
|
} // \namespace gtsam
|