169 lines
6.1 KiB
Python
169 lines
6.1 KiB
Python
"""
|
|
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
|
|
Atlanta, Georgia 30332-0415
|
|
All Rights Reserved
|
|
|
|
See LICENSE for the license information
|
|
|
|
A script validating the Preintegration of IMU measurements.
|
|
|
|
Authors: Frank Dellaert, Varun Agrawal.
|
|
"""
|
|
|
|
# pylint: disable=invalid-name,unused-import,wrong-import-order
|
|
|
|
from typing import Optional, Sequence
|
|
|
|
import gtsam
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
from gtsam.utils.plot import plot_pose3
|
|
from mpl_toolkits.mplot3d import Axes3D
|
|
|
|
IMU_FIG = 1
|
|
POSES_FIG = 2
|
|
GRAVITY = 10
|
|
|
|
|
|
class PreintegrationExample:
|
|
"""Base class for all preintegration examples."""
|
|
@staticmethod
|
|
def defaultParams(g: float):
|
|
"""Create default parameters with Z *up* and realistic noise parameters"""
|
|
params = gtsam.PreintegrationParams.MakeSharedU(g)
|
|
kGyroSigma = np.radians(0.5) / 60 # 0.5 degree ARW
|
|
kAccelSigma = 0.1 / 60 # 10 cm VRW
|
|
params.setGyroscopeCovariance(kGyroSigma**2 * np.identity(3, float))
|
|
params.setAccelerometerCovariance(kAccelSigma**2 *
|
|
np.identity(3, float))
|
|
params.setIntegrationCovariance(0.0000001**2 * np.identity(3, float))
|
|
return params
|
|
|
|
def __init__(self,
|
|
twist: Optional[np.ndarray] = None,
|
|
bias: Optional[gtsam.imuBias.ConstantBias] = None,
|
|
params: Optional[gtsam.PreintegrationParams] = None,
|
|
dt: float = 1e-2):
|
|
"""Initialize with given twist, a pair(angularVelocityVector, velocityVector)."""
|
|
|
|
# setup interactive plotting
|
|
plt.ion()
|
|
|
|
# Setup loop as default scenario
|
|
if twist is not None:
|
|
(W, V) = twist
|
|
else:
|
|
# default = loop with forward velocity 2m/s, while pitching up
|
|
# with angular velocity 30 degree/sec (negative in FLU)
|
|
W = np.array([0, -np.radians(30), 0])
|
|
V = np.array([2, 0, 0])
|
|
|
|
self.scenario = gtsam.ConstantTwistScenario(W, V)
|
|
self.dt = dt
|
|
|
|
self.maxDim = 5
|
|
self.labels = list('xyz')
|
|
self.colors = list('rgb')
|
|
|
|
if params:
|
|
self.params = params
|
|
else:
|
|
# Default params with simple gravity constant
|
|
self.params = self.defaultParams(g=GRAVITY)
|
|
|
|
if bias is not None:
|
|
self.actualBias = bias
|
|
else:
|
|
accBias = np.array([0, 0.1, 0])
|
|
gyroBias = np.array([0, 0, 0])
|
|
self.actualBias = gtsam.imuBias.ConstantBias(accBias, gyroBias)
|
|
|
|
# Create runner
|
|
self.runner = gtsam.ScenarioRunner(self.scenario, self.params, self.dt,
|
|
self.actualBias)
|
|
|
|
fig, self.axes = plt.subplots(4, 3)
|
|
fig.set_tight_layout(True)
|
|
|
|
def plotImu(self, t: float, measuredOmega: Sequence,
|
|
measuredAcc: Sequence):
|
|
"""
|
|
Plot IMU measurements.
|
|
Args:
|
|
t: The time at which the measurement was recoreded.
|
|
measuredOmega: Measured angular velocity.
|
|
measuredAcc: Measured linear acceleration.
|
|
"""
|
|
plt.figure(IMU_FIG)
|
|
|
|
# plot angular velocity
|
|
omega_b = self.scenario.omega_b(t)
|
|
for i, (label, color) in enumerate(zip(self.labels, self.colors)):
|
|
ax = self.axes[0][i]
|
|
ax.scatter(t, omega_b[i], color='k', marker='.')
|
|
ax.scatter(t, measuredOmega[i], color=color, marker='.')
|
|
ax.set_xlabel('angular velocity ' + label)
|
|
|
|
# plot acceleration in nav
|
|
acceleration_n = self.scenario.acceleration_n(t)
|
|
for i, (label, color) in enumerate(zip(self.labels, self.colors)):
|
|
ax = self.axes[1][i]
|
|
ax.scatter(t, acceleration_n[i], color=color, marker='.')
|
|
ax.set_xlabel('acceleration in nav ' + label)
|
|
|
|
# plot acceleration in body
|
|
acceleration_b = self.scenario.acceleration_b(t)
|
|
for i, (label, color) in enumerate(zip(self.labels, self.colors)):
|
|
ax = self.axes[2][i]
|
|
ax.scatter(t, acceleration_b[i], color=color, marker='.')
|
|
ax.set_xlabel('acceleration in body ' + label)
|
|
|
|
# plot actual specific force, as well as corrupted
|
|
actual = self.runner.actualSpecificForce(t)
|
|
for i, (label, color) in enumerate(zip(self.labels, self.colors)):
|
|
ax = self.axes[3][i]
|
|
ax.scatter(t, actual[i], color='k', marker='.')
|
|
ax.scatter(t, measuredAcc[i], color=color, marker='.')
|
|
ax.set_xlabel('specific force ' + label)
|
|
|
|
def plotGroundTruthPose(self,
|
|
t: float,
|
|
scale: float = 0.3,
|
|
time_interval: float = 0.01):
|
|
"""
|
|
Plot ground truth pose, as well as prediction from integrated IMU measurements.
|
|
Args:
|
|
t: Time at which the pose was obtained.
|
|
scale: The scaling factor for the pose axes.
|
|
time_interval: The time to wait before showing the plot.
|
|
"""
|
|
actualPose = self.scenario.pose(t)
|
|
plot_pose3(POSES_FIG, actualPose, scale)
|
|
translation = actualPose.translation()
|
|
self.maxDim = max([max(np.abs(translation)), self.maxDim])
|
|
ax = plt.gca()
|
|
ax.set_xlim3d(-self.maxDim, self.maxDim)
|
|
ax.set_ylim3d(-self.maxDim, self.maxDim)
|
|
ax.set_zlim3d(-self.maxDim, self.maxDim)
|
|
|
|
plt.pause(time_interval)
|
|
|
|
def run(self, T: int = 12):
|
|
"""Simulate the loop."""
|
|
for i, t in enumerate(np.arange(0, T, self.dt)):
|
|
measuredOmega = self.runner.measuredAngularVelocity(t)
|
|
measuredAcc = self.runner.measuredSpecificForce(t)
|
|
if i % 25 == 0:
|
|
self.plotImu(t, measuredOmega, measuredAcc)
|
|
self.plotGroundTruthPose(t)
|
|
pim = self.runner.integrate(t, self.actualBias, True)
|
|
predictedNavState = self.runner.predict(pim, self.actualBias)
|
|
plot_pose3(POSES_FIG, predictedNavState.pose(), 0.1)
|
|
|
|
plt.ioff()
|
|
plt.show()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
PreintegrationExample().run()
|