gtsam/python/gtsam/examples/PreintegrationExample.py

169 lines
6.1 KiB
Python

"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
A script validating the Preintegration of IMU measurements.
Authors: Frank Dellaert, Varun Agrawal.
"""
# pylint: disable=invalid-name,unused-import,wrong-import-order
from typing import Optional, Sequence
import gtsam
import matplotlib.pyplot as plt
import numpy as np
from gtsam.utils.plot import plot_pose3
from mpl_toolkits.mplot3d import Axes3D
IMU_FIG = 1
POSES_FIG = 2
GRAVITY = 10
class PreintegrationExample:
"""Base class for all preintegration examples."""
@staticmethod
def defaultParams(g: float):
"""Create default parameters with Z *up* and realistic noise parameters"""
params = gtsam.PreintegrationParams.MakeSharedU(g)
kGyroSigma = np.radians(0.5) / 60 # 0.5 degree ARW
kAccelSigma = 0.1 / 60 # 10 cm VRW
params.setGyroscopeCovariance(kGyroSigma**2 * np.identity(3, float))
params.setAccelerometerCovariance(kAccelSigma**2 *
np.identity(3, float))
params.setIntegrationCovariance(0.0000001**2 * np.identity(3, float))
return params
def __init__(self,
twist: Optional[np.ndarray] = None,
bias: Optional[gtsam.imuBias.ConstantBias] = None,
params: Optional[gtsam.PreintegrationParams] = None,
dt: float = 1e-2):
"""Initialize with given twist, a pair(angularVelocityVector, velocityVector)."""
# setup interactive plotting
plt.ion()
# Setup loop as default scenario
if twist is not None:
(W, V) = twist
else:
# default = loop with forward velocity 2m/s, while pitching up
# with angular velocity 30 degree/sec (negative in FLU)
W = np.array([0, -np.radians(30), 0])
V = np.array([2, 0, 0])
self.scenario = gtsam.ConstantTwistScenario(W, V)
self.dt = dt
self.maxDim = 5
self.labels = list('xyz')
self.colors = list('rgb')
if params:
self.params = params
else:
# Default params with simple gravity constant
self.params = self.defaultParams(g=GRAVITY)
if bias is not None:
self.actualBias = bias
else:
accBias = np.array([0, 0.1, 0])
gyroBias = np.array([0, 0, 0])
self.actualBias = gtsam.imuBias.ConstantBias(accBias, gyroBias)
# Create runner
self.runner = gtsam.ScenarioRunner(self.scenario, self.params, self.dt,
self.actualBias)
fig, self.axes = plt.subplots(4, 3)
fig.set_tight_layout(True)
def plotImu(self, t: float, measuredOmega: Sequence,
measuredAcc: Sequence):
"""
Plot IMU measurements.
Args:
t: The time at which the measurement was recoreded.
measuredOmega: Measured angular velocity.
measuredAcc: Measured linear acceleration.
"""
plt.figure(IMU_FIG)
# plot angular velocity
omega_b = self.scenario.omega_b(t)
for i, (label, color) in enumerate(zip(self.labels, self.colors)):
ax = self.axes[0][i]
ax.scatter(t, omega_b[i], color='k', marker='.')
ax.scatter(t, measuredOmega[i], color=color, marker='.')
ax.set_xlabel('angular velocity ' + label)
# plot acceleration in nav
acceleration_n = self.scenario.acceleration_n(t)
for i, (label, color) in enumerate(zip(self.labels, self.colors)):
ax = self.axes[1][i]
ax.scatter(t, acceleration_n[i], color=color, marker='.')
ax.set_xlabel('acceleration in nav ' + label)
# plot acceleration in body
acceleration_b = self.scenario.acceleration_b(t)
for i, (label, color) in enumerate(zip(self.labels, self.colors)):
ax = self.axes[2][i]
ax.scatter(t, acceleration_b[i], color=color, marker='.')
ax.set_xlabel('acceleration in body ' + label)
# plot actual specific force, as well as corrupted
actual = self.runner.actualSpecificForce(t)
for i, (label, color) in enumerate(zip(self.labels, self.colors)):
ax = self.axes[3][i]
ax.scatter(t, actual[i], color='k', marker='.')
ax.scatter(t, measuredAcc[i], color=color, marker='.')
ax.set_xlabel('specific force ' + label)
def plotGroundTruthPose(self,
t: float,
scale: float = 0.3,
time_interval: float = 0.01):
"""
Plot ground truth pose, as well as prediction from integrated IMU measurements.
Args:
t: Time at which the pose was obtained.
scale: The scaling factor for the pose axes.
time_interval: The time to wait before showing the plot.
"""
actualPose = self.scenario.pose(t)
plot_pose3(POSES_FIG, actualPose, scale)
translation = actualPose.translation()
self.maxDim = max([max(np.abs(translation)), self.maxDim])
ax = plt.gca()
ax.set_xlim3d(-self.maxDim, self.maxDim)
ax.set_ylim3d(-self.maxDim, self.maxDim)
ax.set_zlim3d(-self.maxDim, self.maxDim)
plt.pause(time_interval)
def run(self, T: int = 12):
"""Simulate the loop."""
for i, t in enumerate(np.arange(0, T, self.dt)):
measuredOmega = self.runner.measuredAngularVelocity(t)
measuredAcc = self.runner.measuredSpecificForce(t)
if i % 25 == 0:
self.plotImu(t, measuredOmega, measuredAcc)
self.plotGroundTruthPose(t)
pim = self.runner.integrate(t, self.actualBias, True)
predictedNavState = self.runner.predict(pim, self.actualBias)
plot_pose3(POSES_FIG, predictedNavState.pose(), 0.1)
plt.ioff()
plt.show()
if __name__ == '__main__':
PreintegrationExample().run()