220 lines
7.4 KiB
C++
220 lines
7.4 KiB
C++
/**
|
|
* @file BayesTree.cpp
|
|
* @brief Bayes Tree is a tree of cliques of a Bayes Chain
|
|
* @author Frank Dellaert
|
|
*/
|
|
|
|
#include <boost/foreach.hpp>
|
|
#include "BayesTree.h"
|
|
#include "FactorGraph-inl.h"
|
|
|
|
namespace gtsam {
|
|
|
|
using namespace std;
|
|
|
|
/* ************************************************************************* */
|
|
template<class Conditional>
|
|
BayesTree<Conditional>::Clique::Clique(const sharedConditional& conditional) {
|
|
separator_ = conditional->parents();
|
|
this->push_back(conditional);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
template<class Conditional>
|
|
void BayesTree<Conditional>::Clique::print(const string& s) const {
|
|
cout << s;
|
|
BOOST_REVERSE_FOREACH(const sharedConditional& conditional, this->conditionals_)
|
|
cout << " " << conditional->key();
|
|
if (!separator_.empty()) {
|
|
cout << " :";
|
|
BOOST_FOREACH(string key, separator_)
|
|
cout << " " << key;
|
|
}
|
|
cout << endl;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
template<class Conditional>
|
|
void BayesTree<Conditional>::Clique::printTree(const string& indent) const {
|
|
print(indent);
|
|
BOOST_FOREACH(shared_ptr child, children_)
|
|
child->printTree(indent+" ");
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
template<class Conditional>
|
|
template<class Factor>
|
|
typename BayesTree<Conditional>::sharedBayesNet
|
|
BayesTree<Conditional>::Clique::shortcut(shared_ptr R) {
|
|
// The shortcut density is a conditional P(S|R) of the separator of this
|
|
// clique on the root. We can compute it recursively from the parent shortcut
|
|
// P(Sp|R) as \int P(Fp|Sp) P(Sp|R), where Fp are the frontal nodes in p
|
|
|
|
// A first base case is when this clique or its parent is the root,
|
|
// in which case we return an empty Bayes net.
|
|
if (R.get()==this || parent_==R) {
|
|
sharedBayesNet empty(new BayesNet<Conditional>);
|
|
return empty;
|
|
}
|
|
|
|
// The parent clique has a Conditional for each frontal node in Fp
|
|
// so we can obtain P(Fp|Sp) in factor graph form
|
|
FactorGraph<Factor> p_Fp_Sp(*parent_);
|
|
//p_Fp_Sp.print("p_Fp_Sp");
|
|
|
|
// If not the base case, obtain the parent shortcut P(Sp|R) as factors
|
|
FactorGraph<Factor> p_Sp_R(*parent_->shortcut<Factor>(R));
|
|
//p_Sp_R.print("p_Sp_R");
|
|
|
|
// now combine P(Cp|R) = P(Fp|Sp) * P(Sp|R)
|
|
FactorGraph<Factor> p_Cp_R = combine(p_Fp_Sp, p_Sp_R);
|
|
|
|
// Eliminate into a Bayes net with ordering designed to integrate out
|
|
// any variables not in *our* separator. Variables to integrate out must be
|
|
// eliminated first hence the desired ordering is [Cp\S S].
|
|
// However, an added wrinkle is that Cp might overlap with the root.
|
|
// Keys corresponding to the root should not be added to the ordering at all.
|
|
|
|
// Get the key list Cp=Fp+Sp, which will form the basis for the integrands
|
|
Ordering integrands;
|
|
{
|
|
Ordering Fp = parent_->ordering(), Sp = parent_->separator_;
|
|
integrands.splice(integrands.end(),Fp);
|
|
integrands.splice(integrands.end(),Sp);
|
|
}
|
|
|
|
// Start ordering with the separator
|
|
Ordering ordering = separator_;
|
|
|
|
// remove any variables in the root, after this integrands = Cp\R, ordering = S\R
|
|
BOOST_FOREACH(string key, R->ordering()) {
|
|
integrands.remove(key);
|
|
ordering.remove(key);
|
|
}
|
|
|
|
// remove any variables in the separator, after this integrands = Cp\R\S
|
|
BOOST_FOREACH(string key, separator_) integrands.remove(key);
|
|
|
|
// form the ordering as [Cp\R\S S\R]
|
|
BOOST_REVERSE_FOREACH(string key, integrands) ordering.push_front(key);
|
|
|
|
// eliminate to get marginal
|
|
sharedBayesNet p_S_R = _eliminate<Factor,Conditional>(p_Cp_R,ordering);
|
|
|
|
// remove all integrands
|
|
BOOST_FOREACH(string key, integrands) p_S_R->pop_front();
|
|
|
|
// return the parent shortcut P(Sp|R)
|
|
return p_S_R;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
template<class Conditional>
|
|
BayesTree<Conditional>::BayesTree() {
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
template<class Conditional>
|
|
BayesTree<Conditional>::BayesTree(const BayesNet<Conditional>& bayesNet) {
|
|
typename BayesNet<Conditional>::const_reverse_iterator rit;
|
|
for ( rit=bayesNet.rbegin(); rit != bayesNet.rend(); ++rit )
|
|
insert(*rit);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
template<class Conditional>
|
|
void BayesTree<Conditional>::print(const string& s) const {
|
|
cout << s << ": size == " << nodes_.size() << endl;
|
|
if (nodes_.empty()) return;
|
|
root_->printTree("");
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
template<class Conditional>
|
|
bool BayesTree<Conditional>::equals(const BayesTree<Conditional>& other,
|
|
double tol) const {
|
|
return size()==other.size();
|
|
//&& equal(nodes_.begin(),nodes_.end(),other.nodes_.begin(),equals_star<Clique>(tol));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
template<class Conditional>
|
|
void BayesTree<Conditional>::insert(const sharedConditional& conditional)
|
|
{
|
|
// get key and parents
|
|
string key = conditional->key();
|
|
list<string> parents = conditional->parents();
|
|
|
|
// if no parents, start a new root clique
|
|
if (parents.empty()) {
|
|
root_ = addClique(conditional);
|
|
return;
|
|
}
|
|
|
|
// otherwise, find the parent clique
|
|
string parent = parents.front();
|
|
sharedClique parent_clique = (*this)[parent];
|
|
|
|
// if the parents and parent clique have the same size, add to parent clique
|
|
if (parent_clique->size() == parents.size()) {
|
|
nodes_.insert(make_pair(key, parent_clique));
|
|
parent_clique->push_front(conditional);
|
|
return;
|
|
}
|
|
|
|
// otherwise, start a new clique and add it to the tree
|
|
addClique(conditional,parent_clique);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Desired: recursive, memoizing version
|
|
// Once we know the clique, can we do all with Nodes ?
|
|
// Sure, as P(x) = \int P(C|root)
|
|
// The natural cache is P(C|root), memoized, of course, in the clique C
|
|
// When any marginal is asked for, we calculate P(C|root) = P(C|Pi)P(Pi|root)
|
|
// Super-naturally recursive !!!!!
|
|
/* ************************************************************************* */
|
|
template<class Conditional>
|
|
template<class Factor>
|
|
typename BayesTree<Conditional>::sharedConditional
|
|
BayesTree<Conditional>::marginal(const string& key) const {
|
|
|
|
// get clique containing key, and remove all factors below key
|
|
sharedClique clique = (*this)[key];
|
|
Ordering ordering = clique->ordering();
|
|
FactorGraph<Factor> graph(*clique);
|
|
while(ordering.front()!=key) {
|
|
graph.findAndRemoveFactors(ordering.front());
|
|
ordering.pop_front();
|
|
}
|
|
|
|
// find all cliques on the path to the root and turn into factor graph
|
|
while (clique->parent_!=NULL) {
|
|
// move up the tree
|
|
clique = clique->parent_;
|
|
|
|
// extend ordering
|
|
Ordering cliqueOrdering = clique->ordering();
|
|
ordering.splice (ordering.end(), cliqueOrdering);
|
|
|
|
// extend factor graph
|
|
FactorGraph<Factor> cliqueGraph(*clique);
|
|
typename FactorGraph<Factor>::const_iterator factor=cliqueGraph.begin();
|
|
for(; factor!=cliqueGraph.end(); factor++)
|
|
graph.push_back(*factor);
|
|
}
|
|
|
|
// TODO: can we prove reverse ordering is efficient?
|
|
ordering.reverse();
|
|
|
|
// eliminate to get marginal
|
|
sharedBayesNet chordalBayesNet = _eliminate<Factor,Conditional>(graph,ordering);
|
|
|
|
return chordalBayesNet->back(); // the root is the marginal
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
|
|
}
|
|
/// namespace gtsam
|