gtsam/gtsam/linear/GaussianBayesNet.cpp

268 lines
9.2 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file GaussianBayesNet.cpp
* @brief Chordal Bayes Net, the result of eliminating a factor graph
* @author Frank Dellaert, Varun Agrawal
*/
#include <gtsam/base/timing.h>
#include <gtsam/inference/FactorGraph-inst.h>
#include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <fstream>
#include <iterator>
using namespace std;
using namespace gtsam;
// In Wrappers we have no access to this so have a default ready
static std::mt19937_64 kRandomNumberGenerator(42);
namespace gtsam {
// Instantiate base class
template class FactorGraph<GaussianConditional>;
/* ************************************************************************* */
bool GaussianBayesNet::equals(const This& bn, double tol) const
{
return Base::equals(bn, tol);
}
/* ************************************************************************ */
VectorValues GaussianBayesNet::optimize() const {
VectorValues solution; // no missing variables -> create an empty vector
return optimize(solution);
}
VectorValues GaussianBayesNet::optimize(const VectorValues& given) const {
VectorValues solution = given;
// (R*x)./sigmas = y by solving x=inv(R)*(y.*sigmas)
// solve each node in reverse topological sort order (parents first)
for (auto it = std::make_reverse_iterator(end()); it != std::make_reverse_iterator(begin()); ++it) {
// i^th part of R*x=y, x=inv(R)*y
// (Rii*xi + R_i*x(i+1:))./si = yi =>
// xi = inv(Rii)*(yi.*si - R_i*x(i+1:))
solution.insert((*it)->solve(solution));
}
return solution;
}
/* ************************************************************************ */
VectorValues GaussianBayesNet::sample(std::mt19937_64* rng) const {
VectorValues result; // no missing variables -> create an empty vector
return sample(result, rng);
}
VectorValues GaussianBayesNet::sample(const VectorValues& given,
std::mt19937_64* rng) const {
VectorValues result(given);
// sample each node in reverse topological sort order (parents first)
for (auto it = std::make_reverse_iterator(end()); it != std::make_reverse_iterator(begin()); ++it) {
const VectorValues sampled = (*it)->sample(result, rng);
result.insert(sampled);
}
return result;
}
/* ************************************************************************ */
VectorValues GaussianBayesNet::sample() const {
return sample(&kRandomNumberGenerator);
}
VectorValues GaussianBayesNet::sample(const VectorValues& given) const {
return sample(given, &kRandomNumberGenerator);
}
/* ************************************************************************ */
VectorValues GaussianBayesNet::optimizeGradientSearch() const
{
gttic(GaussianBayesTree_optimizeGradientSearch);
return GaussianFactorGraph(*this).optimizeGradientSearch();
}
/* ************************************************************************* */
VectorValues GaussianBayesNet::gradient(const VectorValues& x0) const {
return GaussianFactorGraph(*this).gradient(x0);
}
/* ************************************************************************* */
VectorValues GaussianBayesNet::gradientAtZero() const {
return GaussianFactorGraph(*this).gradientAtZero();
}
/* ************************************************************************* */
double GaussianBayesNet::error(const VectorValues& x) const {
double sum = 0.;
for (const auto& gc : *this) {
if (gc) sum += gc->error(x);
}
return sum;
}
/* ************************************************************************* */
double GaussianBayesNet::logProbability(const VectorValues& x) const {
double sum = 0.;
for (const auto& gc : *this) {
if (gc) sum += gc->logProbability(x);
}
return sum;
}
/* ************************************************************************* */
double GaussianBayesNet::evaluate(const VectorValues& x) const {
return exp(logProbability(x));
}
/* ************************************************************************* */
VectorValues GaussianBayesNet::backSubstitute(const VectorValues& rhs) const
{
VectorValues result;
// TODO this looks pretty sketchy. result is passed as the parents argument
// as it's filled up by solving the gaussian conditionals.
for (auto it = std::make_reverse_iterator(end()); it != std::make_reverse_iterator(begin()); ++it) {
result.insert((*it)->solveOtherRHS(result, rhs));
}
return result;
}
/* ************************************************************************* */
// gy=inv(L)*gx by solving L*gy=gx.
// gy=inv(R'*inv(Sigma))*gx
// gz'*R'=gx', gy = gz.*sigmas
VectorValues GaussianBayesNet::backSubstituteTranspose(const VectorValues& gx) const
{
// Initialize gy from gx
// TODO: used to insert zeros if gx did not have an entry for a variable in bn
VectorValues gy = gx;
// we loop from first-eliminated to last-eliminated
// i^th part of L*gy=gx is done block-column by block-column of L
for(const sharedConditional& cg: *this)
cg->solveTransposeInPlace(gy);
return gy;
}
///* ************************************************************************* */
//VectorValues GaussianBayesNet::optimizeGradientSearch() const
//{
// gttic(Compute_Gradient);
// // Compute gradient (call gradientAtZero function, which is defined for various linear systems)
// VectorValues grad = gradientAtZero();
// double gradientSqNorm = grad.dot(grad);
// gttoc(Compute_Gradient);
// gttic(Compute_Rg);
// // Compute R * g
// Errors Rg = GaussianFactorGraph(*this) * grad;
// gttoc(Compute_Rg);
// gttic(Compute_minimizing_step_size);
// // Compute minimizing step size
// double step = -gradientSqNorm / dot(Rg, Rg);
// gttoc(Compute_minimizing_step_size);
// gttic(Compute_point);
// // Compute steepest descent point
// scal(step, grad);
// gttoc(Compute_point);
// return grad;
//}
/* ************************************************************************* */
Ordering GaussianBayesNet::ordering() const {
GaussianFactorGraph factorGraph(*this);
auto keys = factorGraph.keys();
// add frontal keys in order
Ordering ordering;
for (const sharedConditional& cg : *this)
if (cg) {
for (Key key : cg->frontals()) {
ordering.push_back(key);
keys.erase(key);
}
}
// add remaining keys in case Bayes net is incomplete
for (Key key : keys) ordering.push_back(key);
return ordering;
}
/* ************************************************************************* */
pair<Matrix, Vector> GaussianBayesNet::matrix(const Ordering& ordering) const {
// Convert to a GaussianFactorGraph and use its machinery
GaussianFactorGraph factorGraph(*this);
return factorGraph.jacobian(ordering);
}
/* ************************************************************************* */
pair<Matrix, Vector> GaussianBayesNet::matrix() const {
// recursively call with default ordering
const auto defaultOrdering = this->ordering();
return matrix(defaultOrdering);
}
///* ************************************************************************* */
//VectorValues GaussianBayesNet::gradient(const VectorValues& x0) const
//{
// return GaussianFactorGraph(*this).gradient(x0);
//}
///* ************************************************************************* */
//VectorValues GaussianBayesNet::gradientAtZero() const
//{
// return GaussianFactorGraph(*this).gradientAtZero();
//}
/* ************************************************************************* */
double GaussianBayesNet::determinant() const
{
return exp(logDeterminant());
}
/* ************************************************************************* */
double GaussianBayesNet::logDeterminant() const {
double logDet = 0.0;
for (const sharedConditional& cg : *this) {
logDet += cg->logDeterminant();
}
return logDet;
}
/* ************************************************************************* */
double GaussianBayesNet::logNormalizationConstant() const {
/*
normalization constant = 1.0 / sqrt((2*pi)^n*det(Sigma))
logConstant = -0.5 * n*log(2*pi) - 0.5 * log det(Sigma)
log det(Sigma)) = -2.0 * logDeterminant()
thus, logConstant = -0.5*n*log(2*pi) + logDeterminant()
BayesNet logConstant = sum(-0.5*n_i*log(2*pi) + logDeterminant_i())
= sum(-0.5*n_i*log(2*pi)) + sum(logDeterminant_i())
= sum(-0.5*n_i*log(2*pi)) + bn->logDeterminant()
*/
double logNormConst = 0.0;
for (const sharedConditional& cg : *this) {
logNormConst += cg->logNormalizationConstant();
}
return logNormConst;
}
/* ************************************************************************* */
} // namespace gtsam