gtsam/gtsam/nonlinear/GncOptimizer.h

473 lines
20 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file GncOptimizer.h
* @brief The GncOptimizer class
* @author Jingnan Shi
* @author Luca Carlone
* @author Frank Dellaert
*
* Implementation of the paper: Yang, Antonante, Tzoumas, Carlone, "Graduated Non-Convexity for Robust Spatial Perception:
* From Non-Minimal Solvers to Global Outlier Rejection", ICRA/RAL, 2020. (arxiv version: https://arxiv.org/pdf/1909.08605.pdf)
*
* See also:
* Antonante, Tzoumas, Yang, Carlone, "Outlier-Robust Estimation: Hardness, Minimally-Tuned Algorithms, and Applications",
* arxiv: https://arxiv.org/pdf/2007.15109.pdf, 2020.
*/
#pragma once
#include <gtsam/nonlinear/GncParams.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/internal/ChiSquaredInverse.h>
namespace gtsam {
/*
* Quantile of chi-squared distribution with given degrees of freedom at probability alpha.
* Equivalent to chi2inv in Matlab.
*/
static double Chi2inv(const double alpha, const size_t dofs) {
return internal::chi_squared_quantile(dofs, alpha);
}
/* ************************************************************************* */
template<class GncParameters>
class GncOptimizer {
public:
/// For each parameter, specify the corresponding optimizer: e.g., GaussNewtonParams -> GaussNewtonOptimizer.
typedef typename GncParameters::OptimizerType BaseOptimizer;
private:
NonlinearFactorGraph nfg_; ///< Original factor graph to be solved by GNC.
Values state_; ///< Initial values to be used at each iteration by GNC.
GncParameters params_; ///< GNC parameters.
Vector weights_; ///< Weights associated to each factor in GNC (this could be a local variable in optimize, but it is useful to make it accessible from outside).
Vector barcSq_; ///< Inlier thresholds. A factor is considered an inlier if factor.error() < barcSq_[i] (where i is the position of the factor in the factor graph. Note that factor.error() whitens by the covariance.
public:
/// Constructor.
GncOptimizer(const NonlinearFactorGraph& graph, const Values& initialValues,
const GncParameters& params = GncParameters())
: state_(initialValues),
params_(params) {
// make sure all noiseModels are Gaussian or convert to Gaussian
nfg_.resize(graph.size());
for (size_t i = 0; i < graph.size(); i++) {
if (graph[i]) {
NoiseModelFactor::shared_ptr factor = graph.at<NoiseModelFactor>(i);
auto robust =
std::dynamic_pointer_cast<noiseModel::Robust>(factor->noiseModel());
// if the factor has a robust loss, we remove the robust loss
nfg_[i] = robust ? factor-> cloneWithNewNoiseModel(robust->noise()) : factor;
}
}
// check that known inliers and outliers make sense:
std::vector<size_t> inconsistentlySpecifiedWeights; // measurements the user has incorrectly specified
// to be BOTH known inliers and known outliers
std::set_intersection(params.knownInliers.begin(),params.knownInliers.end(),
params.knownOutliers.begin(),params.knownOutliers.end(),
std::inserter(inconsistentlySpecifiedWeights, inconsistentlySpecifiedWeights.begin()));
if(inconsistentlySpecifiedWeights.size() > 0){ // if we have inconsistently specified weights, we throw an exception
params.print("params\n");
throw std::runtime_error("GncOptimizer::constructor: the user has selected one or more measurements"
" to be BOTH a known inlier and a known outlier.");
}
// check that known inliers are in the graph
for (size_t i = 0; i < params.knownInliers.size(); i++){
if( params.knownInliers[i] > nfg_.size()-1 ){ // outside graph
throw std::runtime_error("GncOptimizer::constructor: the user has selected one or more measurements"
"that are not in the factor graph to be known inliers.");
}
}
// check that known outliers are in the graph
for (size_t i = 0; i < params.knownOutliers.size(); i++){
if( params.knownOutliers[i] > nfg_.size()-1 ){ // outside graph
throw std::runtime_error("GncOptimizer::constructor: the user has selected one or more measurements"
"that are not in the factor graph to be known outliers.");
}
}
// initialize weights (if we don't have prior knowledge of inliers/outliers
// the weights are all initialized to 1.
weights_ = initializeWeightsFromKnownInliersAndOutliers();
// set default barcSq_ (inlier threshold)
double alpha = 0.99; // with this (default) probability, inlier residuals are smaller than barcSq_
setInlierCostThresholdsAtProbability(alpha);
}
/** Set the maximum weighted residual error for an inlier (same for all factors). For a factor in the form f(x) = 0.5 * || r(x) ||^2_Omega,
* the inlier threshold is the largest value of f(x) for the corresponding measurement to be considered an inlier.
* In other words, an inlier at x is such that 0.5 * || r(x) ||^2_Omega <= barcSq.
* Assuming an isotropic measurement covariance sigma^2 * Identity, the cost becomes: 0.5 * 1/sigma^2 || r(x) ||^2 <= barcSq.
* Hence || r(x) ||^2 <= 2 * barcSq * sigma^2.
* */
void setInlierCostThresholds(const double inth) {
barcSq_ = inth * Vector::Ones(nfg_.size());
}
/** Set the maximum weighted residual error for an inlier (one for each factor). For a factor in the form f(x) = 0.5 * || r(x) ||^2_Omega,
* the inlier threshold is the largest value of f(x) for the corresponding measurement to be considered an inlier.
* In other words, an inlier at x is such that 0.5 * || r(x) ||^2_Omega <= barcSq.
* */
void setInlierCostThresholds(const Vector& inthVec) {
barcSq_ = inthVec;
}
/** Set the maximum weighted residual error threshold by specifying the probability
* alpha that the inlier residuals are smaller than that threshold
* */
void setInlierCostThresholdsAtProbability(const double alpha) {
barcSq_ = Vector::Ones(nfg_.size()); // initialize
for (size_t k = 0; k < nfg_.size(); k++) {
if (nfg_[k]) {
barcSq_[k] = 0.5 * Chi2inv(alpha, nfg_[k]->dim()); // 0.5 derives from the error definition in gtsam
}
}
}
/** Set weights for each factor. This is typically not needed, but
* provides an extra interface for the user to initialize the weightst
* */
void setWeights(const Vector w) {
if (size_t(w.size()) != nfg_.size()) {
throw std::runtime_error(
"GncOptimizer::setWeights: the number of specified weights"
" does not match the size of the factor graph.");
}
weights_ = w;
}
/// Access a copy of the internal factor graph.
const NonlinearFactorGraph& getFactors() const { return nfg_; }
/// Access a copy of the internal values.
const Values& getState() const { return state_; }
/// Access a copy of the parameters.
const GncParameters& getParams() const { return params_;}
/// Access a copy of the GNC weights.
const Vector& getWeights() const { return weights_;}
/// Get the inlier threshold.
const Vector& getInlierCostThresholds() const {return barcSq_;}
/// Equals.
bool equals(const GncOptimizer& other, double tol = 1e-9) const {
return nfg_.equals(other.getFactors())
&& equal(weights_, other.getWeights())
&& params_.equals(other.getParams())
&& equal(barcSq_, other.getInlierCostThresholds());
}
Vector initializeWeightsFromKnownInliersAndOutliers() const{
Vector weights = Vector::Ones(nfg_.size());
for (size_t i = 0; i < params_.knownOutliers.size(); i++){
weights[ params_.knownOutliers[i] ] = 0.0; // known to be outliers
}
return weights;
}
/// Compute optimal solution using graduated non-convexity.
Values optimize() {
NonlinearFactorGraph graph_initial = this->makeWeightedGraph(weights_);
BaseOptimizer baseOptimizer(
graph_initial, state_, params_.baseOptimizerParams);
Values result = baseOptimizer.optimize();
double mu = initializeMu();
double prev_cost = graph_initial.error(result);
double cost = 0.0; // this will be updated in the main loop
// handle the degenerate case that corresponds to small
// maximum residual errors at initialization
// For GM: if residual error is small, mu -> 0
// For TLS: if residual error is small, mu -> -1
int nrUnknownInOrOut = nfg_.size() - ( params_.knownInliers.size() + params_.knownOutliers.size() );
// ^^ number of measurements that are not known to be inliers or outliers (GNC will need to figure them out)
if (mu <= 0 || nrUnknownInOrOut == 0) { // no need to even call GNC in this case
if (mu <= 0 && params_.verbosity >= GncParameters::Verbosity::SUMMARY) {
std::cout << "GNC Optimizer stopped because maximum residual at "
"initialization is small."
<< std::endl;
}
if (nrUnknownInOrOut==0 && params_.verbosity >= GncParameters::Verbosity::SUMMARY) {
std::cout << "GNC Optimizer stopped because all measurements are already known to be inliers or outliers"
<< std::endl;
}
if (params_.verbosity >= GncParameters::Verbosity::MU) {
std::cout << "mu: " << mu << std::endl;
}
if (params_.verbosity >= GncParameters::Verbosity::VALUES) {
result.print("result\n");
}
return result;
}
size_t iter;
for (iter = 0; iter < params_.maxIterations; iter++) {
// display info
if (params_.verbosity >= GncParameters::Verbosity::MU) {
std::cout << "iter: " << iter << std::endl;
std::cout << "mu: " << mu << std::endl;
}
if (params_.verbosity >= GncParameters::Verbosity::WEIGHTS) {
std::cout << "weights: " << weights_ << std::endl;
}
if (params_.verbosity >= GncParameters::Verbosity::VALUES) {
result.print("result\n");
}
// weights update
weights_ = calculateWeights(result, mu);
// variable/values update
NonlinearFactorGraph graph_iter = this->makeWeightedGraph(weights_);
BaseOptimizer baseOptimizer_iter(
graph_iter, state_, params_.baseOptimizerParams);
result = baseOptimizer_iter.optimize();
// stopping condition
cost = graph_iter.error(result);
if (checkConvergence(mu, weights_, cost, prev_cost)) {
break;
}
// update mu
mu = updateMu(mu);
// get ready for next iteration
prev_cost = cost;
// display info
if (params_.verbosity >= GncParameters::Verbosity::VALUES) {
std::cout << "previous cost: " << prev_cost << std::endl;
std::cout << "current cost: " << cost << std::endl;
}
}
// display info
if (params_.verbosity >= GncParameters::Verbosity::SUMMARY) {
std::cout << "final iterations: " << iter << std::endl;
std::cout << "final mu: " << mu << std::endl;
std::cout << "previous cost: " << prev_cost << std::endl;
std::cout << "current cost: " << cost << std::endl;
}
if (params_.verbosity >= GncParameters::Verbosity::WEIGHTS) {
std::cout << "final weights: " << weights_ << std::endl;
}
return result;
}
/// Initialize the gnc parameter mu such that loss is approximately convex (remark 5 in GNC paper).
double initializeMu() const {
double mu_init = 0.0;
// initialize mu to the value specified in Remark 5 in GNC paper.
switch (params_.lossType) {
case GncLossType::GM:
/* surrogate cost is convex for large mu. initialize as in remark 5 in GNC paper.
Since barcSq_ can be different for each factor, we compute the max of the quantity in remark 5 in GNC paper
*/
for (size_t k = 0; k < nfg_.size(); k++) {
if (nfg_[k]) {
mu_init = std::max(mu_init, 2 * nfg_[k]->error(state_) / barcSq_[k]);
}
}
return mu_init; // initial mu
case GncLossType::TLS:
/* surrogate cost is convex for mu close to zero. initialize as in remark 5 in GNC paper.
degenerate case: 2 * rmax_sq - params_.barcSq < 0 (handled in the main loop)
according to remark mu = params_.barcSq / (2 * rmax_sq - params_.barcSq) = params_.barcSq/ excessResidual
however, if the denominator is 0 or negative, we return mu = -1 which leads to termination of the main GNC loop.
Since barcSq_ can be different for each factor, we look for the minimimum (positive) quantity in remark 5 in GNC paper
*/
mu_init = std::numeric_limits<double>::infinity();
for (size_t k = 0; k < nfg_.size(); k++) {
if (nfg_[k]) {
double rk = nfg_[k]->error(state_);
mu_init = (2 * rk - barcSq_[k]) > 0 ? // if positive, update mu, otherwise keep same
std::min(mu_init, barcSq_[k] / (2 * rk - barcSq_[k]) ) : mu_init;
}
}
if (mu_init >= 0 && mu_init < 1e-6){
mu_init = 1e-6; // if mu ~ 0 (but positive), that means we have measurements with large errors,
// i.e., rk > barcSq_[k] and rk very large, hence we threshold to 1e-6 to avoid mu = 0
}
return mu_init > 0 && !std::isinf(mu_init) ? mu_init : -1; // if mu <= 0 or mu = inf, return -1,
// which leads to termination of the main gnc loop. In this case, all residuals are already below the threshold
// and there is no need to robustify (TLS = least squares)
default:
throw std::runtime_error(
"GncOptimizer::initializeMu: called with unknown loss type.");
}
}
/// Update the gnc parameter mu to gradually increase nonconvexity.
double updateMu(const double mu) const {
switch (params_.lossType) {
case GncLossType::GM:
// reduce mu, but saturate at 1 (original cost is recovered for mu -> 1)
return std::max(1.0, mu / params_.muStep);
case GncLossType::TLS:
// increases mu at each iteration (original cost is recovered for mu -> inf)
return mu * params_.muStep;
default:
throw std::runtime_error(
"GncOptimizer::updateMu: called with unknown loss type.");
}
}
/// Check if we have reached the value of mu for which the surrogate loss matches the original loss.
bool checkMuConvergence(const double mu) const {
bool muConverged = false;
switch (params_.lossType) {
case GncLossType::GM:
muConverged = std::fabs(mu - 1.0) < 1e-9; // mu=1 recovers the original GM function
break;
case GncLossType::TLS:
muConverged = false; // for TLS there is no stopping condition on mu (it must tend to infinity)
break;
default:
throw std::runtime_error(
"GncOptimizer::checkMuConvergence: called with unknown loss type.");
}
if (muConverged && params_.verbosity >= GncParameters::Verbosity::SUMMARY)
std::cout << "muConverged = true " << std::endl;
return muConverged;
}
/// Check convergence of relative cost differences.
bool checkCostConvergence(const double cost, const double prev_cost) const {
bool costConverged = std::fabs(cost - prev_cost) / std::max(prev_cost, 1e-7)
< params_.relativeCostTol;
if (costConverged && params_.verbosity >= GncParameters::Verbosity::SUMMARY){
std::cout << "checkCostConvergence = true (prev. cost = " << prev_cost
<< ", curr. cost = " << cost << ")" << std::endl;
}
return costConverged;
}
/// Check convergence of weights to binary values.
bool checkWeightsConvergence(const Vector& weights) const {
bool weightsConverged = false;
switch (params_.lossType) {
case GncLossType::GM:
weightsConverged = false; // for GM, there is no clear binary convergence for the weights
break;
case GncLossType::TLS:
weightsConverged = true;
for (int i = 0; i < weights.size(); i++) {
if (std::fabs(weights[i] - std::round(weights[i]))
> params_.weightsTol) {
weightsConverged = false;
break;
}
}
break;
default:
throw std::runtime_error(
"GncOptimizer::checkWeightsConvergence: called with unknown loss type.");
}
if (weightsConverged
&& params_.verbosity >= GncParameters::Verbosity::SUMMARY)
std::cout << "weightsConverged = true " << std::endl;
return weightsConverged;
}
/// Check for convergence between consecutive GNC iterations.
bool checkConvergence(const double mu, const Vector& weights,
const double cost, const double prev_cost) const {
return checkCostConvergence(cost, prev_cost)
|| checkWeightsConvergence(weights) || checkMuConvergence(mu);
}
/// Create a graph where each factor is weighted by the gnc weights.
NonlinearFactorGraph makeWeightedGraph(const Vector& weights) const {
// make sure all noiseModels are Gaussian or convert to Gaussian
NonlinearFactorGraph newGraph;
newGraph.resize(nfg_.size());
for (size_t i = 0; i < nfg_.size(); i++) {
if (nfg_[i]) {
auto factor = nfg_.at<NoiseModelFactor>(i);
auto noiseModel = std::dynamic_pointer_cast<noiseModel::Gaussian>(
factor->noiseModel());
if (noiseModel) {
Matrix newInfo = weights[i] * noiseModel->information();
auto newNoiseModel = noiseModel::Gaussian::Information(newInfo);
newGraph[i] = factor->cloneWithNewNoiseModel(newNoiseModel);
} else {
throw std::runtime_error(
"GncOptimizer::makeWeightedGraph: unexpected non-Gaussian noise model.");
}
}
}
return newGraph;
}
/// Calculate gnc weights.
Vector calculateWeights(const Values& currentEstimate, const double mu) {
Vector weights = initializeWeightsFromKnownInliersAndOutliers();
// do not update the weights that the user has decided are known inliers
std::vector<size_t> allWeights;
for (size_t k = 0; k < nfg_.size(); k++) {
allWeights.push_back(k);
}
std::vector<size_t> knownWeights;
std::set_union(params_.knownInliers.begin(), params_.knownInliers.end(),
params_.knownOutliers.begin(), params_.knownOutliers.end(),
std::inserter(knownWeights, knownWeights.begin()));
std::vector<size_t> unknownWeights;
std::set_difference(allWeights.begin(), allWeights.end(),
knownWeights.begin(), knownWeights.end(),
std::inserter(unknownWeights, unknownWeights.begin()));
// update weights of known inlier/outlier measurements
switch (params_.lossType) {
case GncLossType::GM: { // use eq (12) in GNC paper
for (size_t k : unknownWeights) {
if (nfg_[k]) {
double u2_k = nfg_[k]->error(currentEstimate); // squared (and whitened) residual
weights[k] = std::pow(
(mu * barcSq_[k]) / (u2_k + mu * barcSq_[k]), 2);
}
}
return weights;
}
case GncLossType::TLS: { // use eq (14) in GNC paper
for (size_t k : unknownWeights) {
if (nfg_[k]) {
double u2_k = nfg_[k]->error(currentEstimate); // squared (and whitened) residual
double upperbound = (mu + 1) / mu * barcSq_[k];
double lowerbound = mu / (mu + 1) * barcSq_[k];
weights[k] = std::sqrt(barcSq_[k] * mu * (mu + 1) / u2_k) - mu;
if (u2_k >= upperbound || weights[k] < 0) {
weights[k] = 0;
} else if (u2_k <= lowerbound || weights[k] > 1) {
weights[k] = 1;
}
}
}
return weights;
}
default:
throw std::runtime_error(
"GncOptimizer::calculateWeights: called with unknown loss type.");
}
}
};
}