gtsam/gtsam/hybrid/HybridSmoother.cpp

142 lines
4.9 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file HybridSmoother.cpp
* @brief An incremental smoother for hybrid factor graphs
* @author Varun Agrawal
* @date October 2022
*/
#include <gtsam/hybrid/HybridSmoother.h>
#include <algorithm>
#include <unordered_set>
namespace gtsam {
/* ************************************************************************* */
Ordering HybridSmoother::getOrdering(
const HybridGaussianFactorGraph &newFactors) {
HybridGaussianFactorGraph factors(hybridBayesNet());
factors += newFactors;
// Get all the discrete keys from the factors
KeySet allDiscrete = factors.discreteKeySet();
// Create KeyVector with continuous keys followed by discrete keys.
KeyVector newKeysDiscreteLast;
const KeySet newFactorKeys = newFactors.keys();
// Insert continuous keys first.
for (auto &k : newFactorKeys) {
if (!allDiscrete.exists(k)) {
newKeysDiscreteLast.push_back(k);
}
}
// Insert discrete keys at the end
std::copy(allDiscrete.begin(), allDiscrete.end(),
std::back_inserter(newKeysDiscreteLast));
const VariableIndex index(newFactors);
// Get an ordering where the new keys are eliminated last
Ordering ordering = Ordering::ColamdConstrainedLast(
index, KeyVector(newKeysDiscreteLast.begin(), newKeysDiscreteLast.end()),
true);
return ordering;
}
/* ************************************************************************* */
void HybridSmoother::update(HybridGaussianFactorGraph graph,
const Ordering &ordering,
boost::optional<size_t> maxNrLeaves) {
// Add the necessary conditionals from the previous timestep(s).
std::tie(graph, hybridBayesNet_) =
addConditionals(graph, hybridBayesNet_, ordering);
// Eliminate.
auto bayesNetFragment = graph.eliminateSequential(ordering);
/// Prune
if (maxNrLeaves) {
// `pruneBayesNet` sets the leaves with 0 in discreteFactor to nullptr in
// all the conditionals with the same keys in bayesNetFragment.
HybridBayesNet prunedBayesNetFragment =
bayesNetFragment->prune(*maxNrLeaves);
// Set the bayes net fragment to the pruned version
bayesNetFragment =
boost::make_shared<HybridBayesNet>(prunedBayesNetFragment);
}
// Add the partial bayes net to the posterior bayes net.
hybridBayesNet_.add(*bayesNetFragment);
}
/* ************************************************************************* */
std::pair<HybridGaussianFactorGraph, HybridBayesNet>
HybridSmoother::addConditionals(const HybridGaussianFactorGraph &originalGraph,
const HybridBayesNet &originalHybridBayesNet,
const Ordering &ordering) const {
HybridGaussianFactorGraph graph(originalGraph);
HybridBayesNet hybridBayesNet(originalHybridBayesNet);
// If we are not at the first iteration, means we have conditionals to add.
if (!hybridBayesNet.empty()) {
// We add all relevant conditional mixtures on the last continuous variable
// in the previous `hybridBayesNet` to the graph
// Conditionals to remove from the bayes net
// since the conditional will be updated.
std::vector<HybridConditional::shared_ptr> conditionals_to_erase;
// New conditionals to add to the graph
gtsam::HybridBayesNet newConditionals;
// NOTE(Varun) Using a for-range loop doesn't work since some of the
// conditionals are invalid pointers
for (size_t i = 0; i < hybridBayesNet.size(); i++) {
auto conditional = hybridBayesNet.at(i);
for (auto &key : conditional->frontals()) {
if (std::find(ordering.begin(), ordering.end(), key) !=
ordering.end()) {
newConditionals.push_back(conditional);
conditionals_to_erase.push_back(conditional);
break;
}
}
}
// Remove conditionals at the end so we don't affect the order in the
// original bayes net.
for (auto &&conditional : conditionals_to_erase) {
auto it = find(hybridBayesNet.begin(), hybridBayesNet.end(), conditional);
hybridBayesNet.erase(it);
}
graph.push_back(newConditionals);
}
return {graph, hybridBayesNet};
}
/* ************************************************************************* */
GaussianMixture::shared_ptr HybridSmoother::gaussianMixture(
size_t index) const {
return hybridBayesNet_.at(index)->asMixture();
}
/* ************************************************************************* */
const HybridBayesNet &HybridSmoother::hybridBayesNet() const {
return hybridBayesNet_;
}
} // namespace gtsam