65 lines
2.3 KiB
Matlab
65 lines
2.3 KiB
Matlab
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
% Atlanta, Georgia 30332-0415
|
|
% All Rights Reserved
|
|
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
%
|
|
% See LICENSE for the license information
|
|
%
|
|
% @brief Simple 2D robotics example using the SimpleSPCGSolver
|
|
% @author Yong-Dian Jian
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
import gtsam.*
|
|
|
|
%% Assumptions
|
|
% - All values are axis aligned
|
|
% - Robot poses are facing along the X axis (horizontal, to the right in images)
|
|
% - We have full odometry for measurements
|
|
% - The robot is on a grid, moving 2 meters each step
|
|
|
|
%% Create graph container and add factors to it
|
|
graph = NonlinearFactorGraph;
|
|
|
|
%% Add prior
|
|
% gaussian for prior
|
|
priorMean = Pose2(0.0, 0.0, 0.0); % prior at origin
|
|
priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]);
|
|
graph.add(PriorFactorPose2(1, priorMean, priorNoise)); % add directly to graph
|
|
|
|
%% Add odometry
|
|
% general noisemodel for odometry
|
|
odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);
|
|
graph.add(BetweenFactorPose2(1, 2, Pose2(2.0, 0.0, 0.0 ), odometryNoise));
|
|
graph.add(BetweenFactorPose2(2, 3, Pose2(2.0, 0.0, pi/2), odometryNoise));
|
|
graph.add(BetweenFactorPose2(3, 4, Pose2(2.0, 0.0, pi/2), odometryNoise));
|
|
graph.add(BetweenFactorPose2(4, 5, Pose2(2.0, 0.0, pi/2), odometryNoise));
|
|
|
|
%% Add pose constraint
|
|
model = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);
|
|
graph.add(BetweenFactorPose2(5, 2, Pose2(2.0, 0.0, pi/2), model));
|
|
|
|
% print
|
|
graph.print(sprintf('\nFactor graph:\n'));
|
|
|
|
%% Initialize to noisy points
|
|
initialEstimate = Values;
|
|
initialEstimate.insert(1, Pose2(0.5, 0.0, 0.2 ));
|
|
initialEstimate.insert(2, Pose2(2.3, 0.1,-0.2 ));
|
|
initialEstimate.insert(3, Pose2(4.1, 0.1, pi/2));
|
|
initialEstimate.insert(4, Pose2(4.0, 2.0, pi ));
|
|
initialEstimate.insert(5, Pose2(2.1, 2.1,-pi/2));
|
|
initialEstimate.print(sprintf('\nInitial estimate:\n'));
|
|
|
|
%% Optimize using Levenberg-Marquardt optimization with SubgraphSolver
|
|
params = gtsam.LevenbergMarquardtParams;
|
|
subgraphParams = gtsam.SubgraphSolverParameters;
|
|
params.setLinearSolverType('ITERATIVE');
|
|
params.setIterativeParams(subgraphParams);
|
|
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initialEstimate);
|
|
result = optimizer.optimize();
|
|
result.print(sprintf('\nFinal result:\n'));
|
|
|
|
|
|
|