529 lines
16 KiB
C++
529 lines
16 KiB
C++
/**
|
|
* GTSAM Wrap Module Definition
|
|
*
|
|
* These are the current classes available through the matlab toolbox interface,
|
|
* add more functions/classes as they are available.
|
|
*
|
|
* Requirements:
|
|
* Classes must start with an uppercase letter
|
|
* Only one Method/Constructor per line
|
|
* Methods can return
|
|
* - Eigen types: Matrix, Vector
|
|
* - C/C++ basic types: string, bool, size_t, int, double
|
|
* - void
|
|
* - Any class with which be copied with boost::make_shared()
|
|
* - boost::shared_ptr of any object type
|
|
* Limitations on methods
|
|
* - Parsing does not support overloading
|
|
* - There can only be one method with a given name
|
|
* Arguments to functions any of
|
|
* - Eigen types: Matrix, Vector
|
|
* - Eigen types and classes as an optionally const reference
|
|
* - C/C++ basic types: string, bool, size_t, int, double
|
|
* - Any class with which be copied with boost::make_shared() (except Eigen)
|
|
* - boost::shared_ptr of any object type (except Eigen)
|
|
* Comments can use either C++ or C style, with multiple lines
|
|
* Namespace definitions
|
|
* - Names of namespaces must start with a lowercase letter
|
|
* - start a namespace with "namespace {"
|
|
* - end a namespace with exactly "}///\namespace [namespace_name]", optionally adding the name of the namespace
|
|
* - This ending is not C++ standard, and must contain "}///\namespace" to parse
|
|
* - Namespaces can be nested
|
|
* Namespace usage
|
|
* - Namespaces can be specified for classes in arguments and return values
|
|
* - In each case, the namespace must be fully specified, e.g., "namespace1::namespace2::ClassName"
|
|
* Methods must start with a lowercase letter
|
|
* Static methods must start with a letter (upper or lowercase) and use the "static" keyword
|
|
* Includes in C++ wrappers
|
|
* - By default, the include will be <[classname].h>
|
|
* - To override, add a full include statement inside the class definition
|
|
*/
|
|
|
|
/**
|
|
* Status:
|
|
* - TODO: global functions
|
|
* - TODO: default values for arguments
|
|
* - TODO: overloaded functions
|
|
* - TODO: Handle Rot3M conversions to quaternions
|
|
*/
|
|
|
|
class Point2 {
|
|
Point2();
|
|
Point2(double x, double y);
|
|
static Point2 Expmap(Vector v);
|
|
static Vector Logmap(const Point2& p);
|
|
void print(string s) const;
|
|
double x();
|
|
double y();
|
|
Vector localCoordinates(const Point2& p);
|
|
Point2 compose(const Point2& p2);
|
|
Point2 between(const Point2& p2);
|
|
Point2 retract(Vector v);
|
|
};
|
|
|
|
class Point3 {
|
|
Point3();
|
|
Point3(double x, double y, double z);
|
|
Point3(Vector v);
|
|
static Point3 Expmap(Vector v);
|
|
static Vector Logmap(const Point3& p);
|
|
void print(string s) const;
|
|
bool equals(const Point3& p, double tol);
|
|
Vector vector() const;
|
|
double x();
|
|
double y();
|
|
double z();
|
|
Vector localCoordinates(const Point3& p);
|
|
Point3 retract(Vector v);
|
|
Point3 compose(const Point3& p2);
|
|
Point3 between(const Point3& p2);
|
|
};
|
|
|
|
class Rot2 {
|
|
Rot2();
|
|
Rot2(double theta);
|
|
static Rot2 Expmap(Vector v);
|
|
static Vector Logmap(const Rot2& p);
|
|
static Rot2 fromAngle(double theta);
|
|
static Rot2 fromDegrees(double theta);
|
|
static Rot2 fromCosSin(double c, double s);
|
|
static Rot2 relativeBearing(const Point2& d); // Ignoring derivative
|
|
static Rot2 atan2(double y, double x);
|
|
void print(string s) const;
|
|
bool equals(const Rot2& rot, double tol) const;
|
|
double theta() const;
|
|
double degrees() const;
|
|
double c() const;
|
|
double s() const;
|
|
Vector localCoordinates(const Rot2& p);
|
|
Rot2 retract(Vector v);
|
|
Rot2 compose(const Rot2& p2);
|
|
Rot2 between(const Rot2& p2);
|
|
};
|
|
|
|
class Rot3 {
|
|
Rot3();
|
|
Rot3(Matrix R);
|
|
static Rot3 Expmap(Vector v);
|
|
static Vector Logmap(const Rot3& p);
|
|
static Rot3 ypr(double y, double p, double r);
|
|
static Rot3 Rx(double t);
|
|
static Rot3 Ry(double t);
|
|
static Rot3 Rz(double t);
|
|
static Rot3 RzRyRx(double x, double y, double z);
|
|
static Rot3 RzRyRx(const Vector& xyz);
|
|
static Rot3 yaw (double t); // positive yaw is to right (as in aircraft heading)
|
|
static Rot3 pitch(double t); // positive pitch is up (increasing aircraft altitude)
|
|
static Rot3 roll (double t); // positive roll is to right (increasing yaw in aircraft)
|
|
static Rot3 quaternion(double w, double x, double y, double z);
|
|
static Rot3 rodriguez(const Vector& v);
|
|
Matrix matrix() const;
|
|
Matrix transpose() const;
|
|
Vector xyz() const;
|
|
Vector ypr() const;
|
|
double roll() const;
|
|
double pitch() const;
|
|
double yaw() const;
|
|
// Vector toQuaternion() const; // FIXME: Can't cast to Vector properly
|
|
void print(string s) const;
|
|
bool equals(const Rot3& rot, double tol) const;
|
|
Vector localCoordinates(const Rot3& p);
|
|
Rot3 retract(Vector v);
|
|
Rot3 compose(const Rot3& p2);
|
|
Rot3 between(const Rot3& p2);
|
|
};
|
|
|
|
class Pose2 {
|
|
Pose2();
|
|
Pose2(double x, double y, double theta);
|
|
Pose2(double theta, const Point2& t);
|
|
Pose2(const Rot2& r, const Point2& t);
|
|
Pose2(Vector v);
|
|
static Pose2 Expmap(Vector v);
|
|
static Vector Logmap(const Pose2& p);
|
|
void print(string s) const;
|
|
bool equals(const Pose2& pose, double tol) const;
|
|
double x() const;
|
|
double y() const;
|
|
double theta() const;
|
|
int dim() const;
|
|
Vector localCoordinates(const Pose2& p);
|
|
Pose2 retract(Vector v);
|
|
Pose2 compose(const Pose2& p2);
|
|
Pose2 between(const Pose2& p2);
|
|
Rot2 bearing(const Point2& point);
|
|
double range(const Point2& point);
|
|
};
|
|
|
|
class Pose3 {
|
|
Pose3();
|
|
Pose3(const Rot3& r, const Point3& t);
|
|
Pose3(Vector v);
|
|
Pose3(Matrix t);
|
|
static Pose3 Expmap(Vector v);
|
|
static Vector Logmap(const Pose3& p);
|
|
void print(string s) const;
|
|
bool equals(const Pose3& pose, double tol) const;
|
|
double x() const;
|
|
double y() const;
|
|
double z() const;
|
|
Matrix matrix() const;
|
|
Matrix adjointMap() const;
|
|
Pose3 compose(const Pose3& p2);
|
|
Pose3 between(const Pose3& p2);
|
|
Pose3 retract(Vector v);
|
|
Point3 translation() const;
|
|
Rot3 rotation() const;
|
|
};
|
|
|
|
class SharedGaussian {
|
|
SharedGaussian(Matrix covariance);
|
|
void print(string s) const;
|
|
};
|
|
|
|
class SharedDiagonal {
|
|
SharedDiagonal(Vector sigmas);
|
|
void print(string s) const;
|
|
Vector sample() const;
|
|
};
|
|
|
|
class SharedNoiseModel {
|
|
#include <gtsam/linear/SharedGaussian.h>
|
|
SharedNoiseModel(const SharedDiagonal& model);
|
|
SharedNoiseModel(const SharedGaussian& model);
|
|
};
|
|
|
|
class VectorValues {
|
|
VectorValues();
|
|
VectorValues(int nVars, int varDim);
|
|
void print(string s) const;
|
|
bool equals(const VectorValues& expected, double tol) const;
|
|
int size() const;
|
|
void insert(int j, const Vector& value);
|
|
};
|
|
|
|
class GaussianConditional {
|
|
GaussianConditional(int key, Vector d, Matrix R, Vector sigmas);
|
|
GaussianConditional(int key, Vector d, Matrix R, int name1, Matrix S,
|
|
Vector sigmas);
|
|
GaussianConditional(int key, Vector d, Matrix R, int name1, Matrix S,
|
|
int name2, Matrix T, Vector sigmas);
|
|
void print(string s) const;
|
|
bool equals(const GaussianConditional &cg, double tol) const;
|
|
};
|
|
|
|
class GaussianBayesNet {
|
|
GaussianBayesNet();
|
|
void print(string s) const;
|
|
bool equals(const GaussianBayesNet& cbn, double tol) const;
|
|
void push_back(GaussianConditional* conditional);
|
|
void push_front(GaussianConditional* conditional);
|
|
};
|
|
|
|
class GaussianFactor {
|
|
void print(string s) const;
|
|
bool equals(const GaussianFactor& lf, double tol) const;
|
|
double error(const VectorValues& c) const;
|
|
};
|
|
|
|
class JacobianFactor {
|
|
JacobianFactor();
|
|
JacobianFactor(Vector b_in);
|
|
JacobianFactor(int i1, Matrix A1, Vector b, const SharedDiagonal& model);
|
|
JacobianFactor(int i1, Matrix A1, int i2, Matrix A2, Vector b,
|
|
const SharedDiagonal& model);
|
|
JacobianFactor(int i1, Matrix A1, int i2, Matrix A2, int i3, Matrix A3,
|
|
Vector b, const SharedDiagonal& model);
|
|
void print(string s) const;
|
|
bool equals(const GaussianFactor& lf, double tol) const;
|
|
bool empty() const;
|
|
Vector getb() const;
|
|
double error(const VectorValues& c) const;
|
|
GaussianConditional* eliminateFirst();
|
|
};
|
|
|
|
class GaussianFactorGraph {
|
|
GaussianFactorGraph();
|
|
void print(string s) const;
|
|
bool equals(const GaussianFactorGraph& lfgraph, double tol) const;
|
|
|
|
int size() const;
|
|
void push_back(GaussianFactor* ptr_f);
|
|
double error(const VectorValues& c) const;
|
|
double probPrime(const VectorValues& c) const;
|
|
void combine(const GaussianFactorGraph& lfg);
|
|
Matrix denseJacobian() const;
|
|
Matrix denseHessian() const;
|
|
Matrix sparseJacobian_() const;
|
|
};
|
|
|
|
class GaussianSequentialSolver {
|
|
GaussianSequentialSolver(const GaussianFactorGraph& graph, bool useQR);
|
|
GaussianBayesNet* eliminate() const;
|
|
VectorValues* optimize() const;
|
|
GaussianFactor* marginalFactor(int j) const;
|
|
Matrix marginalCovariance(int j) const;
|
|
};
|
|
|
|
class KalmanFilter {
|
|
KalmanFilter(Vector x, const SharedDiagonal& model);
|
|
void print(string s) const;
|
|
Vector mean() const;
|
|
Matrix information() const;
|
|
Matrix covariance() const;
|
|
void predict(Matrix F, Matrix B, Vector u, const SharedDiagonal& model);
|
|
void predict2(Matrix A0, Matrix A1, Vector b, const SharedDiagonal& model);
|
|
void update(Matrix H, Vector z, const SharedDiagonal& model);
|
|
};
|
|
|
|
class Ordering {
|
|
Ordering();
|
|
void print(string s) const;
|
|
bool equals(const Ordering& ord, double tol) const;
|
|
void push_back(string key);
|
|
};
|
|
|
|
// Planar SLAM example domain
|
|
namespace planarSLAM {
|
|
|
|
class Values {
|
|
#include <gtsam/slam/planarSLAM.h>
|
|
Values();
|
|
void print(string s) const;
|
|
Pose2 pose(int key) const;
|
|
Point2 point(int key) const;
|
|
void insertPose(int key, const Pose2& pose);
|
|
void insertPoint(int key, const Point2& point);
|
|
};
|
|
|
|
class Graph {
|
|
#include <gtsam/slam/planarSLAM.h>
|
|
Graph();
|
|
|
|
void print(string s) const;
|
|
|
|
double error(const planarSLAM::Values& values) const;
|
|
Ordering* orderingCOLAMD(const planarSLAM::Values& values) const;
|
|
GaussianFactorGraph* linearize(const planarSLAM::Values& values,
|
|
const Ordering& ordering) const;
|
|
|
|
void addPrior(int key, const Pose2& pose, const SharedNoiseModel& noiseModel);
|
|
void addPoseConstraint(int key, const Pose2& pose);
|
|
void addOdometry(int key1, int key2, const Pose2& odometry, const SharedNoiseModel& noiseModel);
|
|
void addBearing(int poseKey, int pointKey, const Rot2& bearing, const SharedNoiseModel& noiseModel);
|
|
void addRange(int poseKey, int pointKey, double range, const SharedNoiseModel& noiseModel);
|
|
void addBearingRange(int poseKey, int pointKey, const Rot2& bearing, double range,
|
|
const SharedNoiseModel& noiseModel);
|
|
planarSLAM::Values optimize(const planarSLAM::Values& initialEstimate);
|
|
};
|
|
|
|
class Odometry {
|
|
#include <gtsam/slam/planarSLAM.h>
|
|
Odometry(int key1, int key2, const Pose2& measured,
|
|
const SharedNoiseModel& model);
|
|
void print(string s) const;
|
|
GaussianFactor* linearize(const planarSLAM::Values& center, const Ordering& ordering) const;
|
|
};
|
|
|
|
}///\namespace planarSLAM
|
|
|
|
// Simulated2D Example Domain
|
|
namespace simulated2D {
|
|
|
|
class Values {
|
|
#include <gtsam/slam/simulated2D.h>
|
|
Values();
|
|
void insertPose(int i, const Point2& p);
|
|
void insertPoint(int j, const Point2& p);
|
|
int nrPoses() const;
|
|
int nrPoints() const;
|
|
Point2 pose(int i);
|
|
Point2 point(int j);
|
|
};
|
|
|
|
class Graph {
|
|
#include <gtsam/slam/simulated2D.h>
|
|
Graph();
|
|
};
|
|
|
|
// TODO: add factors, etc.
|
|
|
|
}///\namespace simulated2D
|
|
|
|
// Simulated2DOriented Example Domain
|
|
namespace simulated2DOriented {
|
|
|
|
class Values {
|
|
#include <gtsam/slam/simulated2DOriented.h>
|
|
Values();
|
|
void insertPose(int i, const Pose2& p);
|
|
void insertPoint(int j, const Point2& p);
|
|
int nrPoses() const;
|
|
int nrPoints() const;
|
|
Pose2 pose(int i);
|
|
Point2 point(int j);
|
|
};
|
|
|
|
class Graph {
|
|
#include <gtsam/slam/simulated2DOriented.h>
|
|
Graph();
|
|
};
|
|
|
|
// TODO: add factors, etc.
|
|
|
|
}///\namespace simulated2DOriented
|
|
|
|
//// These are considered to be broken and will be added back as they start working
|
|
//// It's assumed that there have been interface changes that might break this
|
|
//
|
|
//class Ordering{
|
|
// Ordering(string key);
|
|
// void print(string s) const;
|
|
// bool equals(const Ordering& ord, double tol) const;
|
|
// Ordering subtract(const Ordering& keys) const;
|
|
// void unique ();
|
|
// void reverse ();
|
|
// void push_back(string s);
|
|
//};
|
|
//
|
|
//class GaussianFactorSet {
|
|
// GaussianFactorSet();
|
|
// void push_back(GaussianFactor* factor);
|
|
//};
|
|
//
|
|
//class Simulated2DPosePrior {
|
|
// Simulated2DPosePrior(Point2& mu, const SharedDiagonal& model, int i);
|
|
// void print(string s) const;
|
|
// double error(const Simulated2DValues& c) const;
|
|
//};
|
|
//
|
|
//class Simulated2DOrientedPosePrior {
|
|
// Simulated2DOrientedPosePrior(Pose2& mu, const SharedDiagonal& model, int i);
|
|
// void print(string s) const;
|
|
// double error(const Simulated2DOrientedValues& c) const;
|
|
//};
|
|
//
|
|
//class Simulated2DPointPrior {
|
|
// Simulated2DPointPrior(Point2& mu, const SharedDiagonal& model, int i);
|
|
// void print(string s) const;
|
|
// double error(const Simulated2DValues& c) const;
|
|
//};
|
|
//
|
|
//class Simulated2DOdometry {
|
|
// Simulated2DOdometry(Point2& mu, const SharedDiagonal& model, int i1, int i2);
|
|
// void print(string s) const;
|
|
// double error(const Simulated2DValues& c) const;
|
|
//};
|
|
//
|
|
//class Simulated2DOrientedOdometry {
|
|
// Simulated2DOrientedOdometry(Pose2& mu, const SharedDiagonal& model, int i1, int i2);
|
|
// void print(string s) const;
|
|
// double error(const Simulated2DOrientedValues& c) const;
|
|
//};
|
|
//
|
|
//class Simulated2DMeasurement {
|
|
// Simulated2DMeasurement(Point2& mu, const SharedDiagonal& model, int i, int j);
|
|
// void print(string s) const;
|
|
// double error(const Simulated2DValues& c) const;
|
|
//};
|
|
//
|
|
//class GaussianFactor {
|
|
// GaussianFactor(string key1,
|
|
// Matrix A1,
|
|
// Vector b_in,
|
|
// const SharedDiagonal& model);
|
|
// GaussianFactor(string key1,
|
|
// Matrix A1,
|
|
// string key2,
|
|
// Matrix A2,
|
|
// Vector b_in,
|
|
// const SharedDiagonal& model);
|
|
// GaussianFactor(string key1,
|
|
// Matrix A1,
|
|
// string key2,
|
|
// Matrix A2,
|
|
// string key3,
|
|
// Matrix A3,
|
|
// Vector b_in,
|
|
// const SharedDiagonal& model);
|
|
// bool involves(string key) const;
|
|
// Matrix getA(string key) const;
|
|
// pair<Matrix,Vector> matrix(const Ordering& ordering) const;
|
|
// pair<GaussianConditional*,GaussianFactor*> eliminate(string key) const;
|
|
//};
|
|
//
|
|
//class GaussianFactorGraph {
|
|
// GaussianConditional* eliminateOne(string key);
|
|
// GaussianBayesNet* eliminate_(const Ordering& ordering);
|
|
// VectorValues* optimize_(const Ordering& ordering);
|
|
// pair<Matrix,Vector> matrix(const Ordering& ordering) const;
|
|
// VectorValues* steepestDescent_(const VectorValues& x0) const;
|
|
// VectorValues* conjugateGradientDescent_(const VectorValues& x0) const;
|
|
//};
|
|
//
|
|
//class Pose2Values{
|
|
// Pose2Values();
|
|
// Pose2 get(string key) const;
|
|
// void insert(string name, const Pose2& val);
|
|
// void print(string s) const;
|
|
// void clear();
|
|
// int size();
|
|
//};
|
|
//
|
|
//class Pose2Factor {
|
|
// Pose2Factor(string key1, string key2,
|
|
// const Pose2& measured, Matrix measurement_covariance);
|
|
// void print(string name) const;
|
|
// double error(const Pose2Values& c) const;
|
|
// size_t size() const;
|
|
// GaussianFactor* linearize(const Pose2Values& config) const;
|
|
//};
|
|
//
|
|
//class Pose2Graph{
|
|
// Pose2Graph();
|
|
// void print(string s) const;
|
|
// GaussianFactorGraph* linearize_(const Pose2Values& config) const;
|
|
// void push_back(Pose2Factor* factor);
|
|
//};
|
|
//
|
|
//class SymbolicFactor{
|
|
// SymbolicFactor(const Ordering& keys);
|
|
// void print(string s) const;
|
|
//};
|
|
//
|
|
//class Simulated2DPosePrior {
|
|
// GaussianFactor* linearize(const Simulated2DValues& config) const;
|
|
//};
|
|
//
|
|
//class Simulated2DOrientedPosePrior {
|
|
// GaussianFactor* linearize(const Simulated2DOrientedValues& config) const;
|
|
//};
|
|
//
|
|
//class Simulated2DPointPrior {
|
|
// GaussianFactor* linearize(const Simulated2DValues& config) const;
|
|
//};
|
|
//
|
|
//class Simulated2DOdometry {
|
|
// GaussianFactor* linearize(const Simulated2DValues& config) const;
|
|
//};
|
|
//
|
|
//class Simulated2DOrientedOdometry {
|
|
// GaussianFactor* linearize(const Simulated2DOrientedValues& config) const;
|
|
//};
|
|
//
|
|
//class Simulated2DMeasurement {
|
|
// GaussianFactor* linearize(const Simulated2DValues& config) const;
|
|
//};
|
|
//
|
|
//class Pose2SLAMOptimizer {
|
|
// Pose2SLAMOptimizer(string dataset_name);
|
|
// void print(string s) const;
|
|
// void update(Vector x) const;
|
|
// Vector optimize() const;
|
|
// double error() const;
|
|
// Matrix a1() const;
|
|
// Matrix a2() const;
|
|
// Vector b1() const;
|
|
// Vector b2() const;
|
|
//};
|