gtsam/gtsam.h

529 lines
16 KiB
C++

/**
* GTSAM Wrap Module Definition
*
* These are the current classes available through the matlab toolbox interface,
* add more functions/classes as they are available.
*
* Requirements:
* Classes must start with an uppercase letter
* Only one Method/Constructor per line
* Methods can return
* - Eigen types: Matrix, Vector
* - C/C++ basic types: string, bool, size_t, int, double
* - void
* - Any class with which be copied with boost::make_shared()
* - boost::shared_ptr of any object type
* Limitations on methods
* - Parsing does not support overloading
* - There can only be one method with a given name
* Arguments to functions any of
* - Eigen types: Matrix, Vector
* - Eigen types and classes as an optionally const reference
* - C/C++ basic types: string, bool, size_t, int, double
* - Any class with which be copied with boost::make_shared() (except Eigen)
* - boost::shared_ptr of any object type (except Eigen)
* Comments can use either C++ or C style, with multiple lines
* Namespace definitions
* - Names of namespaces must start with a lowercase letter
* - start a namespace with "namespace {"
* - end a namespace with exactly "}///\namespace [namespace_name]", optionally adding the name of the namespace
* - This ending is not C++ standard, and must contain "}///\namespace" to parse
* - Namespaces can be nested
* Namespace usage
* - Namespaces can be specified for classes in arguments and return values
* - In each case, the namespace must be fully specified, e.g., "namespace1::namespace2::ClassName"
* Methods must start with a lowercase letter
* Static methods must start with a letter (upper or lowercase) and use the "static" keyword
* Includes in C++ wrappers
* - By default, the include will be <[classname].h>
* - To override, add a full include statement inside the class definition
*/
/**
* Status:
* - TODO: global functions
* - TODO: default values for arguments
* - TODO: overloaded functions
* - TODO: Handle Rot3M conversions to quaternions
*/
class Point2 {
Point2();
Point2(double x, double y);
static Point2 Expmap(Vector v);
static Vector Logmap(const Point2& p);
void print(string s) const;
double x();
double y();
Vector localCoordinates(const Point2& p);
Point2 compose(const Point2& p2);
Point2 between(const Point2& p2);
Point2 retract(Vector v);
};
class Point3 {
Point3();
Point3(double x, double y, double z);
Point3(Vector v);
static Point3 Expmap(Vector v);
static Vector Logmap(const Point3& p);
void print(string s) const;
bool equals(const Point3& p, double tol);
Vector vector() const;
double x();
double y();
double z();
Vector localCoordinates(const Point3& p);
Point3 retract(Vector v);
Point3 compose(const Point3& p2);
Point3 between(const Point3& p2);
};
class Rot2 {
Rot2();
Rot2(double theta);
static Rot2 Expmap(Vector v);
static Vector Logmap(const Rot2& p);
static Rot2 fromAngle(double theta);
static Rot2 fromDegrees(double theta);
static Rot2 fromCosSin(double c, double s);
static Rot2 relativeBearing(const Point2& d); // Ignoring derivative
static Rot2 atan2(double y, double x);
void print(string s) const;
bool equals(const Rot2& rot, double tol) const;
double theta() const;
double degrees() const;
double c() const;
double s() const;
Vector localCoordinates(const Rot2& p);
Rot2 retract(Vector v);
Rot2 compose(const Rot2& p2);
Rot2 between(const Rot2& p2);
};
class Rot3 {
Rot3();
Rot3(Matrix R);
static Rot3 Expmap(Vector v);
static Vector Logmap(const Rot3& p);
static Rot3 ypr(double y, double p, double r);
static Rot3 Rx(double t);
static Rot3 Ry(double t);
static Rot3 Rz(double t);
static Rot3 RzRyRx(double x, double y, double z);
static Rot3 RzRyRx(const Vector& xyz);
static Rot3 yaw (double t); // positive yaw is to right (as in aircraft heading)
static Rot3 pitch(double t); // positive pitch is up (increasing aircraft altitude)
static Rot3 roll (double t); // positive roll is to right (increasing yaw in aircraft)
static Rot3 quaternion(double w, double x, double y, double z);
static Rot3 rodriguez(const Vector& v);
Matrix matrix() const;
Matrix transpose() const;
Vector xyz() const;
Vector ypr() const;
double roll() const;
double pitch() const;
double yaw() const;
// Vector toQuaternion() const; // FIXME: Can't cast to Vector properly
void print(string s) const;
bool equals(const Rot3& rot, double tol) const;
Vector localCoordinates(const Rot3& p);
Rot3 retract(Vector v);
Rot3 compose(const Rot3& p2);
Rot3 between(const Rot3& p2);
};
class Pose2 {
Pose2();
Pose2(double x, double y, double theta);
Pose2(double theta, const Point2& t);
Pose2(const Rot2& r, const Point2& t);
Pose2(Vector v);
static Pose2 Expmap(Vector v);
static Vector Logmap(const Pose2& p);
void print(string s) const;
bool equals(const Pose2& pose, double tol) const;
double x() const;
double y() const;
double theta() const;
int dim() const;
Vector localCoordinates(const Pose2& p);
Pose2 retract(Vector v);
Pose2 compose(const Pose2& p2);
Pose2 between(const Pose2& p2);
Rot2 bearing(const Point2& point);
double range(const Point2& point);
};
class Pose3 {
Pose3();
Pose3(const Rot3& r, const Point3& t);
Pose3(Vector v);
Pose3(Matrix t);
static Pose3 Expmap(Vector v);
static Vector Logmap(const Pose3& p);
void print(string s) const;
bool equals(const Pose3& pose, double tol) const;
double x() const;
double y() const;
double z() const;
Matrix matrix() const;
Matrix adjointMap() const;
Pose3 compose(const Pose3& p2);
Pose3 between(const Pose3& p2);
Pose3 retract(Vector v);
Point3 translation() const;
Rot3 rotation() const;
};
class SharedGaussian {
SharedGaussian(Matrix covariance);
void print(string s) const;
};
class SharedDiagonal {
SharedDiagonal(Vector sigmas);
void print(string s) const;
Vector sample() const;
};
class SharedNoiseModel {
#include <gtsam/linear/SharedGaussian.h>
SharedNoiseModel(const SharedDiagonal& model);
SharedNoiseModel(const SharedGaussian& model);
};
class VectorValues {
VectorValues();
VectorValues(int nVars, int varDim);
void print(string s) const;
bool equals(const VectorValues& expected, double tol) const;
int size() const;
void insert(int j, const Vector& value);
};
class GaussianConditional {
GaussianConditional(int key, Vector d, Matrix R, Vector sigmas);
GaussianConditional(int key, Vector d, Matrix R, int name1, Matrix S,
Vector sigmas);
GaussianConditional(int key, Vector d, Matrix R, int name1, Matrix S,
int name2, Matrix T, Vector sigmas);
void print(string s) const;
bool equals(const GaussianConditional &cg, double tol) const;
};
class GaussianBayesNet {
GaussianBayesNet();
void print(string s) const;
bool equals(const GaussianBayesNet& cbn, double tol) const;
void push_back(GaussianConditional* conditional);
void push_front(GaussianConditional* conditional);
};
class GaussianFactor {
void print(string s) const;
bool equals(const GaussianFactor& lf, double tol) const;
double error(const VectorValues& c) const;
};
class JacobianFactor {
JacobianFactor();
JacobianFactor(Vector b_in);
JacobianFactor(int i1, Matrix A1, Vector b, const SharedDiagonal& model);
JacobianFactor(int i1, Matrix A1, int i2, Matrix A2, Vector b,
const SharedDiagonal& model);
JacobianFactor(int i1, Matrix A1, int i2, Matrix A2, int i3, Matrix A3,
Vector b, const SharedDiagonal& model);
void print(string s) const;
bool equals(const GaussianFactor& lf, double tol) const;
bool empty() const;
Vector getb() const;
double error(const VectorValues& c) const;
GaussianConditional* eliminateFirst();
};
class GaussianFactorGraph {
GaussianFactorGraph();
void print(string s) const;
bool equals(const GaussianFactorGraph& lfgraph, double tol) const;
int size() const;
void push_back(GaussianFactor* ptr_f);
double error(const VectorValues& c) const;
double probPrime(const VectorValues& c) const;
void combine(const GaussianFactorGraph& lfg);
Matrix denseJacobian() const;
Matrix denseHessian() const;
Matrix sparseJacobian_() const;
};
class GaussianSequentialSolver {
GaussianSequentialSolver(const GaussianFactorGraph& graph, bool useQR);
GaussianBayesNet* eliminate() const;
VectorValues* optimize() const;
GaussianFactor* marginalFactor(int j) const;
Matrix marginalCovariance(int j) const;
};
class KalmanFilter {
KalmanFilter(Vector x, const SharedDiagonal& model);
void print(string s) const;
Vector mean() const;
Matrix information() const;
Matrix covariance() const;
void predict(Matrix F, Matrix B, Vector u, const SharedDiagonal& model);
void predict2(Matrix A0, Matrix A1, Vector b, const SharedDiagonal& model);
void update(Matrix H, Vector z, const SharedDiagonal& model);
};
class Ordering {
Ordering();
void print(string s) const;
bool equals(const Ordering& ord, double tol) const;
void push_back(string key);
};
// Planar SLAM example domain
namespace planarSLAM {
class Values {
#include <gtsam/slam/planarSLAM.h>
Values();
void print(string s) const;
Pose2 pose(int key) const;
Point2 point(int key) const;
void insertPose(int key, const Pose2& pose);
void insertPoint(int key, const Point2& point);
};
class Graph {
#include <gtsam/slam/planarSLAM.h>
Graph();
void print(string s) const;
double error(const planarSLAM::Values& values) const;
Ordering* orderingCOLAMD(const planarSLAM::Values& values) const;
GaussianFactorGraph* linearize(const planarSLAM::Values& values,
const Ordering& ordering) const;
void addPrior(int key, const Pose2& pose, const SharedNoiseModel& noiseModel);
void addPoseConstraint(int key, const Pose2& pose);
void addOdometry(int key1, int key2, const Pose2& odometry, const SharedNoiseModel& noiseModel);
void addBearing(int poseKey, int pointKey, const Rot2& bearing, const SharedNoiseModel& noiseModel);
void addRange(int poseKey, int pointKey, double range, const SharedNoiseModel& noiseModel);
void addBearingRange(int poseKey, int pointKey, const Rot2& bearing, double range,
const SharedNoiseModel& noiseModel);
planarSLAM::Values optimize(const planarSLAM::Values& initialEstimate);
};
class Odometry {
#include <gtsam/slam/planarSLAM.h>
Odometry(int key1, int key2, const Pose2& measured,
const SharedNoiseModel& model);
void print(string s) const;
GaussianFactor* linearize(const planarSLAM::Values& center, const Ordering& ordering) const;
};
}///\namespace planarSLAM
// Simulated2D Example Domain
namespace simulated2D {
class Values {
#include <gtsam/slam/simulated2D.h>
Values();
void insertPose(int i, const Point2& p);
void insertPoint(int j, const Point2& p);
int nrPoses() const;
int nrPoints() const;
Point2 pose(int i);
Point2 point(int j);
};
class Graph {
#include <gtsam/slam/simulated2D.h>
Graph();
};
// TODO: add factors, etc.
}///\namespace simulated2D
// Simulated2DOriented Example Domain
namespace simulated2DOriented {
class Values {
#include <gtsam/slam/simulated2DOriented.h>
Values();
void insertPose(int i, const Pose2& p);
void insertPoint(int j, const Point2& p);
int nrPoses() const;
int nrPoints() const;
Pose2 pose(int i);
Point2 point(int j);
};
class Graph {
#include <gtsam/slam/simulated2DOriented.h>
Graph();
};
// TODO: add factors, etc.
}///\namespace simulated2DOriented
//// These are considered to be broken and will be added back as they start working
//// It's assumed that there have been interface changes that might break this
//
//class Ordering{
// Ordering(string key);
// void print(string s) const;
// bool equals(const Ordering& ord, double tol) const;
// Ordering subtract(const Ordering& keys) const;
// void unique ();
// void reverse ();
// void push_back(string s);
//};
//
//class GaussianFactorSet {
// GaussianFactorSet();
// void push_back(GaussianFactor* factor);
//};
//
//class Simulated2DPosePrior {
// Simulated2DPosePrior(Point2& mu, const SharedDiagonal& model, int i);
// void print(string s) const;
// double error(const Simulated2DValues& c) const;
//};
//
//class Simulated2DOrientedPosePrior {
// Simulated2DOrientedPosePrior(Pose2& mu, const SharedDiagonal& model, int i);
// void print(string s) const;
// double error(const Simulated2DOrientedValues& c) const;
//};
//
//class Simulated2DPointPrior {
// Simulated2DPointPrior(Point2& mu, const SharedDiagonal& model, int i);
// void print(string s) const;
// double error(const Simulated2DValues& c) const;
//};
//
//class Simulated2DOdometry {
// Simulated2DOdometry(Point2& mu, const SharedDiagonal& model, int i1, int i2);
// void print(string s) const;
// double error(const Simulated2DValues& c) const;
//};
//
//class Simulated2DOrientedOdometry {
// Simulated2DOrientedOdometry(Pose2& mu, const SharedDiagonal& model, int i1, int i2);
// void print(string s) const;
// double error(const Simulated2DOrientedValues& c) const;
//};
//
//class Simulated2DMeasurement {
// Simulated2DMeasurement(Point2& mu, const SharedDiagonal& model, int i, int j);
// void print(string s) const;
// double error(const Simulated2DValues& c) const;
//};
//
//class GaussianFactor {
// GaussianFactor(string key1,
// Matrix A1,
// Vector b_in,
// const SharedDiagonal& model);
// GaussianFactor(string key1,
// Matrix A1,
// string key2,
// Matrix A2,
// Vector b_in,
// const SharedDiagonal& model);
// GaussianFactor(string key1,
// Matrix A1,
// string key2,
// Matrix A2,
// string key3,
// Matrix A3,
// Vector b_in,
// const SharedDiagonal& model);
// bool involves(string key) const;
// Matrix getA(string key) const;
// pair<Matrix,Vector> matrix(const Ordering& ordering) const;
// pair<GaussianConditional*,GaussianFactor*> eliminate(string key) const;
//};
//
//class GaussianFactorGraph {
// GaussianConditional* eliminateOne(string key);
// GaussianBayesNet* eliminate_(const Ordering& ordering);
// VectorValues* optimize_(const Ordering& ordering);
// pair<Matrix,Vector> matrix(const Ordering& ordering) const;
// VectorValues* steepestDescent_(const VectorValues& x0) const;
// VectorValues* conjugateGradientDescent_(const VectorValues& x0) const;
//};
//
//class Pose2Values{
// Pose2Values();
// Pose2 get(string key) const;
// void insert(string name, const Pose2& val);
// void print(string s) const;
// void clear();
// int size();
//};
//
//class Pose2Factor {
// Pose2Factor(string key1, string key2,
// const Pose2& measured, Matrix measurement_covariance);
// void print(string name) const;
// double error(const Pose2Values& c) const;
// size_t size() const;
// GaussianFactor* linearize(const Pose2Values& config) const;
//};
//
//class Pose2Graph{
// Pose2Graph();
// void print(string s) const;
// GaussianFactorGraph* linearize_(const Pose2Values& config) const;
// void push_back(Pose2Factor* factor);
//};
//
//class SymbolicFactor{
// SymbolicFactor(const Ordering& keys);
// void print(string s) const;
//};
//
//class Simulated2DPosePrior {
// GaussianFactor* linearize(const Simulated2DValues& config) const;
//};
//
//class Simulated2DOrientedPosePrior {
// GaussianFactor* linearize(const Simulated2DOrientedValues& config) const;
//};
//
//class Simulated2DPointPrior {
// GaussianFactor* linearize(const Simulated2DValues& config) const;
//};
//
//class Simulated2DOdometry {
// GaussianFactor* linearize(const Simulated2DValues& config) const;
//};
//
//class Simulated2DOrientedOdometry {
// GaussianFactor* linearize(const Simulated2DOrientedValues& config) const;
//};
//
//class Simulated2DMeasurement {
// GaussianFactor* linearize(const Simulated2DValues& config) const;
//};
//
//class Pose2SLAMOptimizer {
// Pose2SLAMOptimizer(string dataset_name);
// void print(string s) const;
// void update(Vector x) const;
// Vector optimize() const;
// double error() const;
// Matrix a1() const;
// Matrix a2() const;
// Vector b1() const;
// Vector b2() const;
//};