gtsam/gtsam/geometry/Unit3.cpp

178 lines
5.1 KiB
C++

/* ----------------------------------------------------------------------------
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/*
* @file Unit3.h
* @date Feb 02, 2011
* @author Can Erdogan
* @author Frank Dellaert
* @author Alex Trevor
* @brief The Unit3 class - basically a point on a unit sphere
*/
#include <gtsam/geometry/Unit3.h>
#include <gtsam/geometry/Point2.h>
#include <boost/random/mersenne_twister.hpp>
#ifdef __clang__
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wunused-variable"
#endif
#include <boost/random/uniform_on_sphere.hpp>
#ifdef __clang__
# pragma clang diagnostic pop
#endif
#include <boost/random/variate_generator.hpp>
#include <iostream>
using namespace std;
namespace gtsam {
/* ************************************************************************* */
Unit3 Unit3::FromPoint3(const Point3& point, OptionalJacobian<2,3> H) {
Unit3 direction(point);
if (H) {
// 3*3 Derivative of representation with respect to point is 3*3:
Matrix3 D_p_point;
point.normalize(D_p_point); // TODO, this calculates norm a second time :-(
// Calculate the 2*3 Jacobian
*H << direction.basis().transpose() * D_p_point;
}
return direction;
}
/* ************************************************************************* */
Unit3 Unit3::Random(boost::mt19937 & rng) {
// TODO allow any engine without including all of boost :-(
boost::uniform_on_sphere<double> randomDirection(3);
// This variate_generator object is required for versions of boost somewhere
// around 1.46, instead of drawing directly using boost::uniform_on_sphere(rng).
boost::variate_generator<boost::mt19937&, boost::uniform_on_sphere<double> >
generator(rng, randomDirection);
vector<double> d = generator();
Unit3 result;
result.p_ = Point3(d[0], d[1], d[2]);
return result;
}
/* ************************************************************************* */
const Matrix32& Unit3::basis() const {
// Return cached version if exists
if (B_)
return *B_;
// Get the axis of rotation with the minimum projected length of the point
Point3 axis;
double mx = fabs(p_.x()), my = fabs(p_.y()), mz = fabs(p_.z());
if ((mx <= my) && (mx <= mz))
axis = Point3(1.0, 0.0, 0.0);
else if ((my <= mx) && (my <= mz))
axis = Point3(0.0, 1.0, 0.0);
else if ((mz <= mx) && (mz <= my))
axis = Point3(0.0, 0.0, 1.0);
else
assert(false);
// Create the two basis vectors
Point3 b1 = p_.cross(axis);
b1 = b1 / b1.norm();
Point3 b2 = p_.cross(b1);
b2 = b2 / b2.norm();
// Create the basis matrix
B_.reset(Matrix32());
(*B_) << b1.x(), b2.x(), b1.y(), b2.y(), b1.z(), b2.z();
return *B_;
}
/* ************************************************************************* */
/// The print fuction
void Unit3::print(const std::string& s) const {
cout << s << ":" << p_ << endl;
}
/* ************************************************************************* */
Matrix3 Unit3::skew() const {
return skewSymmetric(p_.x(), p_.y(), p_.z());
}
/* ************************************************************************* */
Vector2 Unit3::error(const Unit3& q, OptionalJacobian<2,2> H) const {
// 2D error is equal to B'*q, as B is 3x2 matrix and q is 3x1
Matrix23 Bt = basis().transpose();
Vector2 xi = Bt * q.p_.vector();
if (H)
*H = Bt * q.basis();
return xi;
}
/* ************************************************************************* */
double Unit3::distance(const Unit3& q, OptionalJacobian<1,2> H) const {
Matrix2 H_;
Vector2 xi = error(q, H_);
double theta = xi.norm();
if (H)
*H = (xi.transpose() / theta) * H_;
return theta;
}
/* ************************************************************************* */
Unit3 Unit3::retract(const Vector2& v) const {
// Get the vector form of the point and the basis matrix
Vector3 p = Point3::Logmap(p_);
Matrix32 B = basis();
// Compute the 3D xi_hat vector
Vector3 xi_hat = v(0) * B.col(0) + v(1) * B.col(1);
double xi_hat_norm = xi_hat.norm();
// Avoid nan
if (xi_hat_norm == 0.0) {
if (v.norm() == 0.0)
return Unit3(point3());
else
return Unit3(-point3());
}
Vector3 exp_p_xi_hat = cos(xi_hat_norm) * p
+ sin(xi_hat_norm) * (xi_hat / xi_hat_norm);
return Unit3(exp_p_xi_hat);
}
/* ************************************************************************* */
Vector2 Unit3::localCoordinates(const Unit3& y) const {
Vector3 p = Point3::Logmap(p_);
Vector3 q = Point3::Logmap(y.p_);
double dot = p.dot(q);
// Check for special cases
if (std::abs(dot - 1.0) < 1e-16)
return Vector2(0, 0);
else if (std::abs(dot + 1.0) < 1e-16)
return (Vector(2) << M_PI, 0).finished();
else {
// no special case
double theta = acos(dot);
Vector3 result_hat = (theta / sin(theta)) * (q - p * dot);
return basis().transpose() * result_hat;
}
}
/* ************************************************************************* */
}